A two-dimensional granular system consists of a single intruder and particle board. All particles are frictionless and placed in a fluid with a specific density and viscosity. This work aims to investigate how particle bed can support the intruder in the way similar to how buoyant force can support a floating object. The final condition of the intruder is limited to the partially floating condition since the sinking condition will give any supporting information in formulating granular buoyant force. Considered types of forces are the gravitational force, fluid buoyant force, fluid viscous force, particle- particle and particle-wall normal force with elastic and damping constants, and particle-particle binding force for the intruder. Simulation is performed using the molecular dynamics method implementing the Euler algorithm. Only one kind of parameter variation is used in this work, which is a variation of intruder particle density. As the results, it is observed that an intruder with larger particle density sinks deeper than the smaller ones, but how it floats is still inaccurate. Finally, it can be concluded that the granular buoyant force will show similar characteristics as a fluid buoyant force, but not the same due to nature of granular particles that built the system.

1.
G.
Sigerson
, "
On a Cause of the Buoyancy of Bodies of a Greater Density than Water
",
Proceedings of the Royal Irish Academy, Science
, vol.
2
, no.
2
, pp.
22
25
(
1875
).
2.
T. C.
Hsu
,
S.
Kissel
,
P.
Eldrigde
,
S.
Gutman
,
J.
Selco
,
K.
McAlister
,
M.
Vela
,
M.
Vela
, "
CPO Focus on Physical Sicence
",
CPO Science, Nashua
, 1st Edition, pp.
84
86
(
2007
).
3.
P. R.
Espindola
,
C. R.
Cena
,
D. C. B.
Alves
,
D. F.
Bozano
,
A. M. B.
Goncalves
, "
Use of an Arduino to Study Buoyancy Force
",
Physics Education [Phys. Educ.]
, vol.
53
, no.
3
, pp.
035010
(
2018
).
4.
J. M.
Vitale
,
M. C.
Linn
, "Designing Virtual Laboratories to Foster Knowledge Integration: Buoyancy and Density", in
Cyber-Physical Laboratories in Engineering and Science Education
, edited by
M.
Auer
,
A.
Azad
,
A.
Edwards
,
T.
de Jong
,
Springer
,
Cham
, pp.
163
189
(
2018
).
5.
J. M.
Vitale
,
L.
Applebaum
,
M. C.
Linn
, "
Coordinating between Graphs and Science Concepts: Density and Buoyancy
",
Cognition and Instruction [Cogn Instr.]
, vol.
37
, no.
1
, pp.
38
72
(
2019
).
6.
T. N.
Ain
,
H. A. C.
Wibowo
,
S. N.
Khotimah
,
S.
Viridi
,
Journal of Physics: Conference Series [J. Phys. Conf. Ser.]
, vol.
739
, no.
1
, p.
012135
(
2016
).
7.
S.
Viridi
,
Nurhayati
,
J.
Sabaryati
,
D.
Muliyati
,
SPEKTRA: Jurnal Fisika dan Aplikasinya
, vol.
3
, no.
3
, pp.
133
142
(
2018
).
8.
A. N. F.
Rudiawan
,
K. N.
Sari
,
H.
Notsu
,
S.
Viridi
,
SPEKTRA: Jurnal Fisika dan Aplikasinya
, vol.
4
, no.
2
, pp.
73
80
(
2019
).
9.
S.
Viridi
,
Widayani
,
S. N.
Khotimah
, "
2-D Granular Model of Composite Elasticity using Molecular Dynamics Simulation
",
AIP Conference Proceedings [AIP Conf. Proc.]
, vol.
1454
, no.
1
, pp.
219
222
(
2012
).
This content is only available via PDF.