The performance of photovoltaic modules (PV) to produce the electric energy is determined by parasitic internal resistance consisting of series and parallel resistance (Rs and Rsh). An increase in internal resistance implies a decrease in the quality of output analytically. In this research, we demonstrate the modeling of polycrystalline PV module, which is available in the market using the Lambert-W function and simple experiment by extracting the voltage current (I-V) parameters under dark current conditions by providing a screen in the module. This condition results in relatively small currents and voltages, in accordance with most regions in Indonesia, which have relatively less sunlight due to changing seasons, but are not in the repair of the PV module’s internal parasitic resistance. The I–V characteristic of PV was measured using normal irradiance at a temperature of 30°C for a short period of 5 minutes to preserve constant illumination. A maximum open circuit voltage Voc of 16.9V and short circuit current Isc of 0.93 A are denoted in the I-V curve while the maximum output power Pmax is obtained for 14.08 V and 0.82 A. Using the Lambert-W function which is modified based on the ideal equation of solar cells in the PV module, the parasitic internal resistance Rs and Rsh are then calculated resulting in 1.5 Ω and 107.5 Ω respectively. This internal resistance obtained from this model shows an internal loss and decrease performance due to cell-to-cell contact with the PV module during its operation period.

1.
P.
Papageorgas
,
D.
Piromalis
,
T.
Valavanis
,
S.
Kambasis
,
T.
Iliopoulou
, and
G.
Vokas
,
Energy Procedia, International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability, TMREES15
74
, pp.
423
438
(
2015
).
2.
G. C.
Bakos
,
Appl. Energy
86
(
9
), pp.
1757
1766
(
2009
).
3.
M. D.
Yandt
,
J. P. D.
Cook
,
M.
Kelly
,
H.
Schriemer
, and
K.
Hinzer
,
IEEE J. Photovoltaics
5
(
1
), pp.
337
343
(
2014
).
4.
M.
Knudsen
,
Prog. Photovoltaics Res. Appl
17
, pp.
183
189
(
1934
).
5.
M. S.
Benghanem
and
S. N.
Alamri
,
J. Taibah Univ. Sci
2
(
1
), pp.
94
105
(
2009
).
6.
F.
Zaoui
,
A.
Titaouine
,
M.
Becherif
,
M.
Emziane
, and
A.
Aboubou
,
Energy Procedia
75
, pp.
373
380
(
2015
).
7.
A. A.
El Tayyan
,
Int. J. Adv. Res. Phys. Sci. IJARPS
2
(
8
), pp.
2349
(
2015
).
8.
A.
Jain
and
A.
Kapoor
,
Sol. Energy Mater. Sol. Cells
81
(
2
), pp.
269
277
(
2004
).
9.
G.
Kunz
and
A.
Wagner
,
19th Eur. Photovolt. Sol. Energy Conf BV.
2.70
(
5
), pp.
1
4
(
2004
).
10.
M.
Taciuc
and
A.
Crǎciunescu
,
AIP Conf. Proc
1863
, pp. (
2017
).
11.
J.
Cubas
,
S.
Pindado
, and
M.
Victoria
,
J. Power Sources
247
, pp.
467
474
(
2014
).
12.
Hooray
.
Duta Niaga Hooray Product Datasheet
. (
2010
).
13.
T.
Easwarakhanthan
,
J.
Bottin
,
I.
Bouhouch
, and
C.
Boutrit
,
Int. J. Sol. Energy
4
(
1
), pp.
1
12
(
1986
).