Among several emerging interconnection technologies, shingled solar cell interconnection is the technology to realize highest power densities in solar modules. Its main feature is the replacement of ribbon stringing with direct interconnection by a slight overlapping of the solar cells using electrically conductive adhesives (ECA) as joint material. To succeed in a highly competitive market, this type of interconnection still has to prove its reliability, which requires a sound understanding of the loads this ECA joint faces during module lifetime. This study applies structural mechanic simulations based on the Finite Element Method (FEM) to investigate the impact of external loads according to IEC 61215 on a string of shingled solar cells within a solar module laminate. Linear elasticity is compared to the more realistic viscoelastic modelling of the encapsulant (EVA) and the ECA with the objective of reducing computational effort, which is caused by viscoelasticity. We found that linear elasticity can be applied in comparative studies to investigate the potential of different geometric designs to reduce mechanical stress in the joint. When it comes to the calculation of absolute values for stress and strain the strong viscoelastic properties of EVA and ECA cannot be neglected.

1.
ITRPV (2018).
2.
P.
Baliozian
,
E.
Lohmüller
,
T.
Fellmeth
,
N.
Wöhrle
,
A.
Krieg
, and
R.
Preu
,
Sol. RRL
1700171
(
2018
).
3.
N.
Klasen
,
A.
Mondon
,
A.
Kraft
, and
U.
Eitner
,
7th Workshop on Metallization and Interconnection for Crystalline Silicon Solar Cells
,
2017
(
2017
).
4.
W.
Schmidt
and
K.-D.
Rasch
,
IEEE Trans. Electron Devices
37
,
355
(
1990
).
5.
J.
Zhao
,
A.
Wang
,
E.
Abbaspour-Sani
,
F.
Yun
, and
M. A.
Green
,
IEEE Electron Device Lett.
18
,
48
(
1997
).
6.
S.
Dietrich
,
M.
Pander
,
M.
Sander
,
S.-H.
Schulze
, and
M.
Ebert
, “
Mechanical and Thermo-Mechanical Assessment of Encapsulated Solar Cells by Finite-Element-Simulation
,” in
Proceedings of the SPIE Solar Energy and Technology
(
2010
),
77730F
.
7.
U.
Eitner
,
M.
Koentges
, and
R.
Brendel
, “
Measuring thermomechanical displacements of solar cells in laminates using digital image correlation
,” in
Proceedings of the 34th IEEE Photovoltaic Specialists Conference
(
2009
), p.
1280
.
8.
M.
Pander
,
S.
Dietrich
,
S.-H.
Schulze
,
U.
Eitner
, and
M.
Ebert
, “Thermo-mechanical assessment of solar cell displacement with respect to the viscoelastic behaviour of the encapsulant,” in
Proceedings of the 12th IEEE International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems
, edited by
Institute of Electrical and Electronics Engineers
(
2011
), p.
1
.
9.
S.
Dietrich
,
M.
Sander
,
M.
Pander
, and
M.
Ebert
in
Proc. of SPIE
, Vol.
8472
,
84720P-1
84720P-9
.
10.
G.
Beaucarne
,
Energy Procedia
98
,
115
(
2016
).
11.
U.
Eitner
,
Thermomechanics of photovoltaic modules
, Dissertation,
Martin-Luther-Universität Halle-Wittenberg
,
2011
.
12.
G. W.
Ehrenstein
,
Polymer Werkstoffe. Struktur Eigenschaften Anwendung
, 3. Auflage (
Hanser Verlag
,
München
,
2011
).
13.
K. P.
Menard
and
N. R.
Menard
,
Encyclopedia of Polymer Science and Technology
,
1
(
2002
).
14.
A. S.
Argon
,
The physics of deformation and fracture of polymers
, Online-ausg (
Cambridge University Press
,
Cambridge
,
2013
).
15.
I. M.
Ward
and
J.
Sweeney
,
Mechanical properties of solid polymers
, Third edition (
Wiley
,
Chichester, West Sussex, United Kingdom
,
2013
).
16.
F. R.
Schwarzl
,
Polymermechanik. Struktur und mechanisches Verhalten von Polymeren
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
1990
).
17.
R. S.
Lakes
,
Viscoelastic solids
(
CRC Press
,
Boca Raton
,
1999
).
18.
M.
Pander
,
S.-H.
Schulze
, and
M.
Ebert
, “
Mechanical Modeling of eletrically conductive Adhesives for photovoltaic Applications
,” in
Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition
(
2014
), p.
3399
.
19.
R. D.
Andrews
and
A. V.
Tobolsky
,
Journal of Polymer Science
7
,
221
(
1951
).
20.
M. L.
Williams
,
R. F.
Landel
, and
J. D.
Ferry
,
Journal of the American Chemical Society
77
,
3701
(
1955
).
This content is only available via PDF.