An alternative environmentally benign support was prepared from nanocrystalline silica (SiO2), and cellulose (NCC) acquired from oil palm fronds leaves (OPFL) for incorporation with polyethersulfone (PES). The resultant PES-SiO2-NCC support was then used for covalent immobilization of Candida rugosa lipase (CRL/PES-SiO2−NCC). FTIR-ATR spectral data of SiO2−NCC indicated that NCC was hydrogen-bonded to SiO2 based on the characteristic wavenumbers at 1735 cm−1 and 1650 cm−1 for NCC, 1732 cm−1 and 1657 cm−1 for SiO2, alongside decreased peak intensity and the overall downshifted wavenumbers, respectively. X-ray diffractograms of NCC and SiO2 showed crystallinity indices of 68% and 70%, respectively, implying their crystalline nature. The CRL/ PES-SiO2−NCC biocatalyst yielded pentyl valerate as high as 78.3% after 2 h using a 0.02 cm membrane size and 5% (w/v) incorporation of SiO2−NCC but in the absence of the pore former, PVP K30. The findings invariably envisage the biocompatibility of NCC and SiO2 derived from OPFL as a hybrid nano-filler to prepare the PES-SiO2−NCC composite for lipase immobilization.

1.
T.
Raghavendra
,
N.
Panchal
,
J.
Divecha
,
A.
Shah
, and
D.
Madamwar
,
BioMed Res. Int.
2014
, (
2014
).
2.
J.
Tao
and
J.-H.
Xu
,
Curr. Opin. Chem. Biol.
13
,
43
50
(
2009
).
3.
S.M.
Thomas
,
R.
DiCosimo
, and
V.
Nagarajan
,
Trends Biotechnol.
20
,
238
242
(
2002
).
4.
R.
Saxena
,
A.
Sheoran
,
B.
Giri
, and
W.S.
Davidson
,
J. Microbiol. Methods
52
,
1
18
(
2003
).
5.
A.
Houde
,
A.
Kademi
, and
D.
Leblanc
,
Appl. Biochem. Biotechnol.
118
,
155
170
(
2004
).
6.
N.H.C.
Marzuki
,
N.A.
Mahat
,
F.
Huyop
,
H.Y.
Aboul-Enein
and
R.A.
Wahab
,
Food and Bioprod. Process.
96
,
211
220
(
2015
).
7.
I.N.A.
Rahman
,
N.
Attan
,
N.A.
Mahat
,
J.
Jamalis
,
A.S.A.
Keyon
,
C.
Kurniawan
and
R.A.
Wahab
,
Int. J. Biol. Macromol.
115
,
680
695
(
2018
).
8.
P.
Zucca
and
E.
Sanjust
,
Molecules
19
,
14139
14194
(
2014
).
9.
I.B.-B.
Romdhane
,
Z.B.
Romdhane
,
A.
Gargouri
, and
H.
Belghith
,
J. Mol. Catal. B: Enzym.
68
,
230
239
(
2011
).
10.
C.
Mateo
,
J.M.
Palomo
,
G.
Fernandez-Lorente
,
J.M.
Guisan
and
R.
Fernandez-Lafuente
,
Enzyme Microb. Technol.
40
,
1451
1463
(
2007
).
11.
A.
Mishra
and
S.
Ghosh
,
Fuel
236
,
544
553
(
2019
).
12.
K.
Raj
and
C.
Krishnan
,
Ind. Crop Prod.
131
,
32
40
(
2019
).
13.
E.
Onoja
,
S.
Chandren
,
F.I.A.
Razak
and
R.A.
Wahab
,
J. Biotechnol.
283
,
81
96
(
2018
).
14.
F.
Beltramino
,
M.B.
Roncero
,
A.L.
Torres
,
T.
Vidal
and
C.
Valls
,
Cellulose
23
,
1777
1789
(
2016
).
15.
A.G.
de Souza
,
D.B.
Rocha
,
F.S.
Kano
and
D. dos Santos
Rosa
,
Resour. Conserv. Recy.
143
,
133
142
(
2019
).
16.
M.M.
Haafiz
,
A.
Hassan
,
Z.
Zakaria
and
I.
Inuwa
,
Carbohydr. Polym.
103
,
119
125
(
2014
).
17.
D.
Datta
and
G.
Halder
,
J. Polym. Environ.
1
18
(
2019
).
18.
M.
Naddaf
,
H.
Kafa
and
I.
Ghanem
,
Silicon
1
8
(
2019
).
19.
L.
Segal
,
J.
Creely
,
A. Martin
Jr
and
C.
Conrad
,
Text. Res. J.
29
,
786
794
(
1959
).
20.
F.I.
Ditzel
,
E.
Prestes
,
B.M.
Carvalho
,
I.M.
Demiate
and
L.A.
Pinheiro
,
Carbohydr. Polym.
157
,
1577
1585
(
2017
).
21.
A.W.T.
Owolabi
,
G.
Arniza
,
W. wan
Daud
, and
A.F.
Alkharkhi
,
BioResources
11
,
3013
3026
(
2016
).
22.
R.M.
Sheltami
,
I.
Abdullah
,
I.
Ahmad
,
A.
Dufresne
and
H.
Kargarzadeh
,
Carbohydr. Polym.
88
,
772
779
(
2012
).
23.
E.K.
Pasandideh
,
B.
Kakavandi
,
S.
Nasseri
,
A.H.
Mahvi
,
R.
Nabizadeh
,
A.
Esrafili
and
R.R.
Kalantary
,
J. Environ. Health Sci.
14
,
21
(
2016
).
24.
B.
Vatsha
,
J.C.
Ngila
, and
R.M.
Moutloali
,
Phys. Chem. Earth
67
,
125
131
(
2014
).
25.
M.
Subramaniam
,
P.
Goh
,
W.
Lau
,
Y.
Tan
,
B.
Ng
and
A.
Ismail
,
Chem. Eng. J.
316
,
101
110
(
2017
).
26.
M.
Aghababaie
,
M.
Beheshti
,
A.-K.
Bordbar
and
A.
Razmjou
,
RSC Adv.
8
,
4561
4570
(
2018
).
27.
N.
Pujari
,
B.
Vaidya
,
S.
Bagalkote
,
S.
Ponrathnam
, and
S.
Nene
,
J. Membrane Sci.
285
,
395
403
(
2006
).
28.
T.
Xie
,
A.
Wang
,
L.
Huang
,
H.
Li
,
Z.
Chen
,
Q.
Wang
and
X.
Yin
,
Afr. J. Biotechnol.
8
, (
2009
).
29.
A.
Anand
and
L.R.
Weatherley
,
Process Biochem.
68
,
100
107
(
2018
).
This content is only available via PDF.