Carbazole is a heterocyclic aromatic compound that imposes threat to the environment when contaminates water source. A marine-isolated bacterium, Thalassospira profundimaris shows ability to degrade carbazole. The use of free-cell for bioremediation is inefficient as the cells are exposed to harsh environmental condition. In this study, immobilizations of T. profundimaris in gellan gum were investigated to develop robust systems for bioremediation. The mechanical strength and its relationship with transport of carbazole was investigated. The findings proved that concentration of immobilization media affects diffusivity and mechanical strength. Higher media concentration formed a stronger bead with lower diffusivity where lower concentration formed soft bead with higher diffusivity. The optimum concentration of gellan gum was 0.7% (w/v) with 61% carbazole degradation recorded and an optimum diffusivity of 36.8 × 10−7 cm2/s. It has the highest Young’s modulus (0.041810 N/mm2) among other concentrations. The findings of the optimum carbazole degradation, strength and diffusivity were profound to increase the performance of the bacteria entrapped inside the immobilization media for bioremediation and withstand harsh environment.

1.
A. M.
Jha
and
M. K.
Bharti
,
Mutat. Res.
500
,
97
101
(
2002
).
2.
R. C.
Kuhad
,
N.
Sood
,
K. K.
Tripathi
,
A.
Singh
and
O. P.
Ward
,
Adv. Appl. Microbiol.
56
,
185
213
(
2004
).
3.
Z.
Bayat
,
M.
Hassanshahian
and
S.
Cappello
,
The Open Microbiology Journal.
9
,
48
54
(
2015
).
4.
D. P.
Singh
,
R.
Prabha
,
V. K.
Gupta
,
M. K.
Verma
,
Front Microbiol.
9
,
1331
(
2018
).
5.
P.
Ghosh
and
S. J.
Mukherji
,
Environ. Chem. Eng.
6
,
2881
2891
(
2018
).
6.
H.
Nagashima
,
A.
Zulkharnain
,
R.
Maeda
,
H.
Fuse
,
K.
Iwata
and
T.
Omori
,
Current Microbiol.
61
,
506
(
2010
).
7.
S. A.
Ahmad
,
N. A.
Shamaan
,
N. M.
Arif
,
G. B.
Koon
,
M. Y. A.
Shukor
and
M A.
Syed
,
World J. Microbiol. Biotechnol.
28
,
347
352
(
2012
).
8.
H.
Chen
,
M.
Wang
,
Y.
Shen
and
S.
Yao
,
Chin. J. Chem. Eng.
22
,
187
192
(
2014
).
9.
S. C. S.
Martins
,
C. M.
Martins
,
L. M. C. G.
Fiúza
and
S. T.
Santaella
,
Afr. J. Biotechnol.
12
,
4412
4418
(
2013
).
10.
A. K.
Al-Jwaid
,
D.
Berillo
,
I. N.
Savina
,
A. B.
Cundy
and
J. L.
Caplin
,
RSC Advances.
8
,
30813
30824
(
2018
).
11.
A.
Partovinia
and
B.
Rasekh
,
Crit. Rev. Env. Sci. Tech.
48
,
1
38
(
2018
).
12.
F.
Ertan
,
H.
Yagar
and
B.
Balkan
,
Prep. Biochem. Biotechn.
37
,
195
204
(
2007
).
13.
P.
Moslemy
,
R. J.
Neufeld
and
S. R.
Guiot
,
Biotech and Bioeng.
80
,
175
184
(
2002
).
14.
H. T.
Pu
and
R. Y. K.
Yang
,
Biotechnol. Bioeng.
32
,
891
896
(
1988
).
15.
M. A.
Nawaz
,
H. U.
Rehman
,
Z.
Bibi
and
A.
Aman
,
Biochem. Biophys. Rep.
4
,
250
256
(
2015
)
16.
Y.
Bhatnagar
,
G. B.
Singh
,
A.
Mathur
,
S.
Srivastava
,
S
,
Gupta
and
N. J.
Gupta
,
Biochem. Technol.
6
,
1003
1007
(
2016
).
17.
Y. C.
Meng
,
L. B.
Hong
and
J. Q.
Jin
,
Applied Mechanics and Materials.
284–287
,
20
24
(
2013
).
18.
M.
Dewan
,
G.
Sarkar
,
M.
Bhowmik
,
B.
Das
,
A. K.
Chattoapadhyay
,
D.
Rana
and
D.
Chattopadhyay
,
Int. J. Biol. Macromol.
102
,
258
265
(
2017
).
19.
A.
Lopez
,
N.
Lazaro
and
A. M.
Marques
,
J. Microbiol. Method.
30
,
231
234
(
1997
)
20.
C. J.
Ferris
and
M.
Panhuis
,
Soft Matter.
5
,
3430
(
2009
).
This content is only available via PDF.