Bars, Sezgin and Nishino have proposed super Yang-Mills theory in D = 12 and beyond. Here we consider M-theory in signature (10,1) as a reduction of signature (10,2), using a projection of 𝔒8(βˆ’24) along b2. The projection gives a visual decomposition of 𝔒8(βˆ’24) that makes the vector of 𝔰𝔬(10, 2) and its spinor manifest. Reduction along a time direction yields an 𝔰𝔬(10, 1) invariant subspace that we associate with the spacetime of D = 11 M-theory.

1.
I.
β€ˆ
Bars
,
A case for 14 dimensions
,
Phys. Lett. B
403
β€ˆ
257
–
264
(
1997
), arXiv:hep-th/9704054.
2.
E.
β€ˆ
Sezgin
,
Super Yang-Mills in (11,3) Dimensions
,
Phys. Lett. B
403
β€ˆ
265
–
272
(
1997
), arXiv:hep-th/9703123.
3.
P.
β€ˆ
Truini
,
Exceptional Lie Algebras, SU(3) and Jordan Pairs
, arXiv:1112.1258 [math-ph].
4.
A.
β€ˆ
Marrani
,
P.
β€ˆ
Truini
,
Exceptional Lie Algebras at the very Foundations of Space and Time
, V.S. Varadarajan, UCLA Department of Mathematics, November 7-9th (
2014
), arXiv:1506.08576 [hep-th].
5.
P.
β€ˆ
Truini
,
M.
β€ˆ
Rios
,
A.
β€ˆ
Marrani
,
The Magic Star of Exceptional Periodicity
, To be published in
AMS proceedings of the 4th Mile High Conference on Nonassociative Mathematics University of Denver
,
Denver, Colorado, USA
, July 29-August 5th (
2017
), arXiv:1711.07881 [hep-th].
6.
H.
β€ˆ
Nishino
,
Supersymmetric Yang-Mills Theories in D12
,
Nucl. Phys. B
523
β€ˆ
450
–
464
(
1998
), arXiv:hep-th/9708064.
7.
T.
β€ˆ
Banks
,
W.
β€ˆ
Fischler
,
S.H.
β€ˆ
Shenker
,
L.
β€ˆ
Susskind
,
M Theory As A Matrix Model: A Conjecture
,
Phys. Rev. D
55
:
5112
–
5128
(
1997
), arXiv:hep-th/9610043.
8.
M.
β€ˆ
Rios
,
A.
β€ˆ
Marrani
,
D.
β€ˆ
Chester
,
The Geometry of Exceptional Yang-Mills
, arXiv:1811.06101 [hep-th].
This content is only available via PDF.