The NUMEN project aims at accessing experimentally driven information on Nuclear Matrix Elements (NME) involved in the half-life of the neutrinoless double beta decay (0υββ), by high-accuracy measurements of the cross sections of Heavy Ion (HI) induced Double Charge Exchange (DCE) reactions. Particular interest is given to the (18O,18Ne) and (20Ne,20O) reactions as tools for β+ β+ and ββ decays, respectively. First evidence about the possibility to get quantitative information about NME from experiments is found for both kind of reactions. In the experiments, performed at INFN - Laboratory Nazionali del Sud (LNS) in Catania, the beams are accelerated by the Superconducting Cyclotron (CS) and the reaction products are detected by the MAGNEX magnetic spectrometer. The measured cross sections are challengingly low, limiting the present exploration to few selected isotopes of interest in the context of typically low-yield experimental runs. A major upgrade of the LNS facility is foreseen in order to significantly increase the experimental yield, thus making feasible a systematic study of all the cases of interest. Frontiers technologies are going to be developed, to this purpose, for the accelerator and the detection systems. In parallel, advanced theoretical models are developed aiming at extracting the nuclear structure information from the measured cross sections.

1.
J. D.
Vergados
 et al.,
Reports on Progress in Physics
75
,
106301
(
2012
).
2.
P.
Vogel
,
Jour. of Phys. G.
39
,
124002
(
2012
).
3.
J.
Barea
,
J.
Kotila
,
F.
Iachello
,
Phys. Rev. Lett.
109
,
042501
(
2012
).
4.
S.
Dell’Oro
 et al.,
Advances in High Energy Physics
2016
,
216259
(
2016
).
5.
F.
Cappuzzello
 et al.,
Eur. Phys. J. A
54
,
72
(
2018
).
6.
C.
Agodi
 et al.,
Nucl. Part. Phys. Proc.
265
,
28
(
2015
).
7.
F.
Cappuzzello
 et al.,
Eur. Phys. J. A
52
,
167
(
2015
).
8.
F.
Cappuzzello
 et al.,
Nature Communications
6
,
6743
(
2015
).
9.
D.
Carbone
 et al.,
Phys. Rev. C
95
,
034603
(
2017
).
10.
J. R. B.
Oliveira
 et al.,
J. Phys. G
40
,
105101
(
2013
).
11.
M.
Cavallaro
 et al.,
Phys. Rev. C
93
,
064323
(
2016
).
12.
M.
Cavallaro
 et al.,
Nucl. Instr. and Meth. A
700
,
65
(
2013
).
13.
F.
Cappuzzello
 et al.,
Eur. Phys. J. A
51
,
145
(
2015
).
14.
L.
Calabretta
 et al.,
Modern Physics Letters A
32
,
17
(
2017
).
15.
M.
Cortesi
 et al.,
Review of Scientific Instruments
88
,
013303
(
2017
).
16.
D. Lo
Presti
 et al.,
J. Phys. Conf. Ser.
18
,
012034
(
2018
).
17.
S.
Tudisco
 et al.,
Sensors
18
,
2289
(
2018
).
18.
A.
Muoio
 et al.,
EPJ Web of Conferences
117
,
10006
(
2016
).
19.
D.
Carbone
 et al.,
Results in Physics
6
,
863
865
(
2016
).
20.
J. R. B.
Oliveira
 et al.,
J. Phys. Conf. Ser.
18
,
012040
(
2018
).
21.
G.
De Geronimo
 et al.,
IEEE Transactions on Nuclear Science
60
,
2314
2321
(
2013
).
22.
D.
Bonanno
 et al.,
J. Phys. Conf. Ser.
18
,
012006
(
2018
).
23.
A.
Lazzaro
 et al.,
Nucl. Instr. and Methods A
591
,
394
(
2008
).
24.
A.
Lazzaro
 et al.,
Nucl. Instr. and Methods A
585
,
136
(
2008
).
25.
A.
Lazzaro
 et al.,
Nucl. Instr. and Methods A
570
,
192
(
2007
).
26.
A.
Lazzaro
 et al.,
Nucl. Instr. and Methods A
602
,
494
(
2009
).
27.
F.
Pinna
 et al.,
J. Phys. Conf. Ser.
1056
,
012046
(
2018
).
28.
F.
Iazzi
 et al.,
WIT Transactions on Engineering Science
116
,
206
(
2017
).
29.
V.
Capirossi
 et al. 
Nucl. Instr. and Methods A
(
2018
), in press.
30.
S.
Calabrese
 et al.,
Acta Phys. Pol. B
49
,
275
(
2018
).
31.
H.
Lenske
 et al.,
Phys. Rev. C
98
,
044620
(
2018
).
32.
E.
Santopinto
 et al.,
Phys. Rev. C
98
,
061601(R)
(
2018
).
33.
J.
Bellone
 et al.,
J. Phys. Conf. Ser.
1056
,
012004
(
2018
).
34.
M.
Cavallaro
,
Proceedings of Science
302
,
15
(
2017
).
This content is only available via PDF.