We present Ag-free low-concentrator bifacial indium-fluorine-oxide (IFO)/(n+pp+)Cz-Si/indium-tin-oxide (ITO) solar cells based on: (i) a shallow phosphorus-doped n+-emitter; (ii) an easy-to-fabricate screen-printed Al-alloyed Al-p+ back-surface-field (BSF); (iii) transparent conductive IFO and ITO layers grown by ultrasonic spray pyrolysis, which act as passivating and antireflection electrode; (iv) Ag-free multi-wire metallization of copper wire attached by the low-temperature lamination method simultaneously to the front IFO layer, rear ITO layer as well as to the interconnecting ribbons arranged outside the structure using transparent conductive polymer films. For the manufacture of solar cells, we used standard commercially available SiNx/(n+pp+)Cz-Si/Al structures. After removal of the residual Al paste, the Al-p+ layer was thinned by one-sided etchback process. A number of solar cells were prepared differing in the sheet resistance of the Al-p+ layer (Rp+), which ranged from 14 Ω/sq (original, non-etched Al-p+ layer) to 123 Ω/sq. It was found that thinning of the Al-p+ layer (increase in Rp+) greatly improved all the parameters of solar cells. The cell with Rp+ = 81 Ω/sq showed the best combination of conversion parameters. Under 1-sun front/rear illumination, the conversion efficiency of this cell is 17.5%/11.2% (against 16.0%/7.5% for the cell with Rp+ = 14 Ω/sq). At 1-sun front illumination and 20/50% albedo of 1-sun illumination, the equivalent efficiency is equal to 19.9%/23.5% (against 17.7%/20.1% for the cell with Rp+ = 14 Ω/sq). At a sunlight concentration ratio (kC) of 2.3–2.7 suns, the cells with Rp+ in the range 45–123 Ω/sq showed approximately similar maximum front-side efficiency, 17.5–17.9%. However, the operating range of sunlight concentration ratio (kC,OR) determined as η(kC,OR) = η(kC = 1) showed a tendency to decrease from 5.8 ± 0.6 suns to 4 ± 0.5 suns with an increase in Rp+ from 14–45 Ω/sq to 63–123 Ω/sq.

1.
www.ise.fraunhofer.de, Fraunhofer ISE: Photovoltaics Report, updated: 27 August 2018.
2.
Y.
Xing
,
P.
Han
,
S.
Wang
,
P.
Liang
,
S.
Lou
,
Y.
Zhang
,
S.
Hu
,
H.
Zhu
,
C.
Zhao
,
Y.
Mi
,
Renew. Sust. Energy Rev.
51
,
1697
1708
(
2015
).
3.
www.itrpv.org,
International Technology Roadmap for Photovoltaic (ITRPV) Results 2017
, Ninth Edition, September
2018
.
4.
J.
Coello
,
M.
Castro
,
I.
Anton
,
G.
Sala
,
M.A.
Vazquez
,
Prog. Photovoltaics
12
,
323
331
(
2004
).
5.
M.
Finot
,
A.
Mayo
,
B.
MacDonald
, “
High volume silicon cell technologies enabling low-cost CPV systems
”, in:
Proceedings of the 26ᵗʰ European Photovoltaic Solar Energy Conference
,
Hamburg
(
2011
), pp.
617
620
.
6.
C.-W.
Chen
,
X.
Chen
,
K.
Church
,
H.
Yang
,
K.
Tate
,
I.
Cooper
,
A.
Rohatgi
, “
High efficiency screen printed low-medium concentrator silicon solar cells with direct printed 50 µm wide fingers
”, in:
Proceedings of the 38ᵗʰ IEEE Photovoltaic Specialists Conference
,
Austin
(
2012
), on CD.
7.
X.
Chen
,
K.
Church
,
H.
Yang
,
I.
Cooper
,
A.
Rohatgi
, “
High aspect ratio fine gridline for front side mettalization of industrial silicon solar cells by direct printing
”, in:
Proceedings of the 26ᵗʰ European Photovoltaic Solar Energy Conference
, (
2011
), pp.
1094
1098
.
8.
M.
O’Neill
,
A. J.
McDanal
,
D.
Spears
,
C.
Stevenson
,
D.
Gelbaum
, “
Low-cost 20X silicon-cell-based linear Fresnel lens concentrator panel
”, in:
Proceedings of the 7th International Conference on Concentrating Photovoltaic Systems (CPV-7
) (
2011
), pp.
120
124
.
9.
V.
Poulek
,
A.
Khudysh
,
M.
Libra
,
Sol. Energy
120
,
113
116
(
2015
).
10.
R.
Guerrero-Lemus
,
R.
Vega
,
T.
Kim
,
A.
Kimm
,
L. E.
Shephard
,
Renew. Sust. Energy Rev.
60
,
1533
1549
(
2016
).
11.
G.G.
Untila
,
T.N.
Kost
,
A.B.
Chebotareva
,
E.D.
Kireeva
,
Sol. Energy Mater. Sol. Cells
137
,
26
33
(
2015
).
12.
A.
Cuevas
,
A.
Luque
,
J.
Eguren
,
J.
del Alamo
,
Sol. Cells
3
,
337
40
(
1981
).
13.
G.G.
Untila
,
T.N.
Kost
,
A.B.
Chebotareva
,
M.B.
Zaks
,
A.M.
Sitnikov
,
O.I.
Solodukha
,
Semiconductors
39
,
1346
1351
(
2005
).
14.
A.B.
Chebotareva
,
G.G.
Untila
,
T.N.
Kost
,
A.S.
Stepanov
,
S.N.
Salazkin
,
V.V.
Shaposhnikova
,
Sol. Energy Mater. Sol. Cells
165
,
1
8
(
2017
).
15.
A.B.
Chebotareva
,
G.G.
Untila
,
T.N.
Kost
,
A.S.
Stepanov
,
S.N.
Salazkin
,
V.V.
Shaposhnikova
,
Sol. Energy
164
,
292
300
(
2018
).
16.
G.G.
Untila
,
T.N.
Kost
,
A.B.
Chebotareva
,
Sol. Energy
142
,
330
339
(
2017
).
17.
J.
Leng
,
Z.
Wang
,
J.
Wang
,
H.-H.
Wu
,
G.
Yan
,
X.
Li
,
H.
Guo
,
Y.
Liu
,
Q.
Zhang
,
Z.
Guo
,
Chem. Soc. Rev.
DOI: (
2019
).
18.
G.G.
Untila
,
T.N.
Kost
,
A.B.
Chebotareva
,
M.B.
Zaks
,
AM
;
Sitnikov
,
O.I.
Solodukha
,
M.Z.
Shvarts
,
Semiconductors
46
,
1194
1200
(
2012
).
19.
G.G.
Untila
,
T.N.
Kost
,
A.B.
Chebotareva
,
M.B.
Zaks
,
A.M.
Sitnikov
,
O.I.
Solodukha
,
M.Z
Shvarts
,
Prog. Photovolt.: Res. Appl.
23
,
600
610
(
2015
).
20.
G.G.
Untila
,
T.N.
Kost
,
A.B.
Chebotareva
,
M.B.
Zaks
,
A.M.
Sitnikov
,
O.I.
Solodukha
,
M.Z
Shvarts
,
AIP Conf. Proc.
1556
,
106
109
(
2013
).
21.
G.G.
Untila
,
T.N.
Kost
,
A.B.
Chebotareva
,
M.B.
Zaks
,
A.M.
Sitnikov
,
O.I.
Solodukha
,
M.Z.
Shvarts
,
Sol. Energy
106
,
88
94
(
2014
).
22.
G.G.
Untila
,
T.N.
Kost
,
A.B.
Chebotareva
,
Sol. Energy
159
,
173
185
(
2018
).
23.
G.G.
Untila
,
T.N.
Kost
,
A.B.
Chebotareva
,
Sol. Energy
174
,
1008
1015
(
2018
).
24.
M.
Rauer
,
C.
Schmiga
,
M.
Hermle
,
S.W.
Glunz
,
Phys. Status Solidi A
207
,
1249
1251
(
2010
).
25.
T.
Dullweber
,
C.
Kranz
,
R.
Peibst
,
U.
Baumann
,
H.
Hannebauer
,
A.
Fulle
,
S.
Steckemetz
,
T.
Weber
,
M.
Kutzer
,
M.
Muller
,
G.
Fischer
,
P.
Palinginis
,
D.H.
Neuhaus
,
Prog. Photovolt.: Res. Appl.
24
,
1487
1498
(
2016
).
26.
C.
Dang
,
R.
Labie
,
E.
Simoen
,
L.
Tous
,
R.
Russel
,
F.
Duerinckx
,
R.
Mertens
,
J.
Poortmans
,
Energy Procedia
124
,
862
868
(
2017
).
27.
G.G.
Untila
,
T.N.
Kost
,
A.B.
Chebotareva
,
A.S.
Stepanov
,
M.B.
Zaks
,
A.M.
Sitnikov
,
O.I.
Solodukha
,
Sol. Energy
98
,
440
447
(
2013
).
28.
J.P.
Singh
,
T.M.
Walsh
,
A.G.
Aberle
,
Prog. Photovolt.: Res. Appl.
22
,
903
909
(
2014
).
29.
T.S.
Liang
,
M.
Pravettoni
,
C.
Deline
,
J.S.
Stein
,
R.
Kopecek
,
J.P.
Singh
,
W.
Luo
,
Y.
Wang
,
A.G.
Aberle
,
Y.S.
Khoo
,
Energy Environ. Sci.
12
,
116
148
(
2019
).
This content is only available via PDF.