Hydrogen is a crucial element for crystalline silicon solar cells due to its ability to passivate bulk defects in silicon. The introduction and distribution of hydrogen has gained a lot of interest due to its proposed involvement in the phenomenon termed “light and elevated temperature induced degradation” (LeTID) in multicrystalline silicon (mc-Si) solar cells. LeTID, which can cause an efficiency loss of about 6-14% (relative) for mc-Si PERC (passivated emitter and rear cell) devices upon exposure to elevated temperature and illumination, is a serious cause of concern for the silicon photovoltaic industry. Interaction of hydrogen with mc-Si is complex as mc-Si contains grain boundaries, dislocations, large concentrations of impurities and traps which may affect the diffusivity of hydrogen in silicon. Understanding the diffusion of hydrogen in mc-Si, and how it affects LeTID, is therefore of great interest. In this contribution, the concentration of hydrogen diffused into p-type mc-Si lifetime samples from hydrogen-rich passivation layers (SiNx:H and AlOx:H) fired at different peak firing temperatures is measured by elastic recoil detection analysis (ERDA) along with Rutherford backscattering (RBS). Also, experiments are done to study the impact of annealing in the presence of hydrogen on the extent of LeTID. A correlation is established between the hydrogen concentration diffused into silicon bulk and the extent of LeTID in lifetime samples fired at different peak firing profiles.

1.
K.
Ramspeck
,
S.
Zimmermann
,
H.
Nagel
,
A.
Metz
,
Y.
Gassenbauer
,
B.
Birkmann
, and
A.
Seidl
,
Proc. 27th European Photovoltaic Solar Energy Conference and Exhibition
,
861–865
,
2012
.
2.
F.
Kersten
,
P.
Engelhart
,
H.
Ploigt
,
A.
Stekolnikov
,
T.
Lindner
,
F.
Stenzel
,
M.
Bartzsch
,
A.
Szpeth
,
K.
Petter
,
J.
Heitmann
, and
J. W.
Müller
,
Sol. Energy Mater. Sol. Cells
,
142
,
83
86
,
2015
.
3.
K.
Petter
,
K.
Hubener
,
F.
Kersten
,
M.
Bartzsch
,
F.
Fertig
,
B.
Kloter
, and
J.
Muller
,
9th Int. Work. Cryst. Silicon Solar Cells
,
6
,
4
,
1
17
,
2016
.
4.
D.
Bredemeier
,
D.
Walter
,
S.
Herlufsen
, and
J.
Schmidt
,
AIP Adv.
,
6
, no.
3
,
035119
,
2016
.
5.
K.
Nakayashiki
,
J.
Hofstetter
,
A. E.
Morishige
,
T. A.
Li
,
D. B.
Needleman
,
M. A.
Jensen
, and
T.
Buonassisi
,
IEEE J. Photovoltaics
,
6
, no.
4
,
1
9
,
2016
.
6.
W.
Kwapil
,
T.
Niewelt
,
M.C.
Schubert
,
Sol. Energy Mater. Sol. Cells
,
173
,
80
84
,
2017
.
7.
F.
Kersten
,
J.
Heitmann
,
J.W.
Müller
,
Energy Procedia
,
92
,
828
832
,
2016
.
8.
C.
Vargas
,
K.
Kim
,
G.
Coletti
,
D.
Payne
,
C.
Chan
,
S.
Wenham
, and
Z.
Hameiri
,
IEEE Journal of Photovoltaics
,
8
, no.
2
,
413
420
,
2018
.
9.
R.
Eberle
,
W.
Kwapil
,
F.
Schindler
,
M.C.
Schubert
,
S.W.
Glunz
,
Phys. Status Solidi (RRL)–Rapid Res. Lett.
,
10
, no.
12
,
861
865
,
2016
.
10.
C.E.
Chan
,
D.N.R.
Payne
,
B.J.
Hallam
,
M.D.
Abbott
,
T.H.
Fung
,
A.M.
Wenham
, et al.,
IEEE J. Photovolt.
, vol.
6
,
1473
1479
,
2016
.
11.
M.
Mayer
,
SIMNRA User’s Guide, Report IPP 9/113, Max-Planck-Institut für Plasmaphysik
,
Garching, Germany
,
1997
12.
B.
Sopori
,
R.
Reedy
,
K.
Jones
,
R.
Matson
, and
N.
Renewable
,
Renew. Energy
, no. September, pp.
25
30
,
1997
.
13.
B. L.
Sopori
 et al.,
B. L.
Sopori
 et al.,
Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC
, pp.
1615
1620
,
1994
.
14.
P.
Hamer
 et al.,
IEEE J. Photovoltaics
,
4
, no.
5
,
1252
1260
,
2014
.
15.
R.
Sharma
 et al.,
Sol. Energy Mater. Sol. Cells
,
195
, pp.
160
167
,
2019
.
This content is only available via PDF.