The emitter formation in industrial p-type silicon solar cells is generally done by phosphorus diffusion. To optimize the emitter in terms of high efficiency, series resistance and recombination losses of the emitter are balanced out. In this work, we present the results of a design of experiment (DoE) to optimize the main parameters of the P-diffusion. Therefore, we use a novel approach to evaluate the results of the DoE: We approximate the unavoidable correlation between the emitter saturation current density (j0e) and the emitter sheet resistance (ρsh) and create a new target variable (dj0e), which describes the deviation from this correlation. This allows us to understand the key parameters that can minimize emitter saturation current density while keeping emitter sheet resistance at a target value.

1.
G.
Fischer
,
M.
Müller
,
S.
Steckemetz
,
R.
Köhler
,
F.
Lottspeich
,
F.
Wolny
,
C.
Koch
,
T.
Roth
,
M.
Kipping
,
H.
Neuhaus
,
E.
Schneiderlöchner
, “
Model based continuous improvement of industrial p-type PERC technology beyond 21% efficiency
”,
Energy Procedia
77
,
515
519
(
2015
).
2.
H.
Wagner
,
A.
Dastgheib-Shirazi
,
B.
Min
,
A. E.
Morishige
,
M.
Steyer
,
G.
Hahn
,
C.
del Cañizo
,
T.
Buonassisi
, and
P. P.
Altermatt
,
J. Appl. Phys.
119
(
18
),
185704
(
2016
).
3.
F.
Ye
 et al., “
22.13% Efficient industrial p-type mono PERC solar cell
”, in
Photovoltaic Specialists Conference
,
43rd IEEE Conference Proceedings
(Institute of Electrical and Electronics Engineers,
Portland, USA
,
2016
), pp.
3360
3365
.
4.
M.
Müller
 et al., “
Loss analysis of 22% efficient industrial PERC solar cells
”,
Energy Procedia
124
,
131
137
(
2017
).
5.
T.
Dullweber
 et al., “
Emitter saturation currents of 22 fa/cm2 applied to industrial PERC cells approaching 22% conversion efficiency
”,
Progress in Photovoltaics: Research and Applications
,
25
(
7
),
509
514
(
2016
).
6.
A.
Cuevas
,
P. A.
Basore
,
G.
Giroult-Matlakowski
, and
C.
Dubois
,
J. Appl. Phys.
80
,
3370
(
1996
).
7.
M.
Müller
,
F.
Wolny
,
G.
Fischer
,
A.
Krause
,
P.
Palinginis
,
H.
Neuhaus
, “
Change of the Bulk Carrier Lifetime of High Quality Silicon Wafers during PERC Solar Cell Processing
” in
Proceedings of the 35th EU PVSEC
(
2018
), pp.
366
370
.
8.
NIST/SEMATECH e-Handbook of Statistical Methods
, https://www.itl.nist.gov/div898/handbook/pri/section3/pri3361.htm/, 2019/04/04.
9.
D. E.
Kane
and
R. M.
Swanson
,
Measurement of the Emitter Saturation Current by a Contactless Photoconductivity Decay Method
,
Proceedings of the 18th IEEE Photovoltaics Specialist Conference
, Las Vegas, 1985 (
IEEE, New York
,
1985
), p.
578
.
10.
R. A.
Sinton
and
A.
Cuevas
,
Appl. Phys. Letters
69
,
2510
2512
(
1996
).
11.
A. L.
Blum
,
J. S.
Swirhun
,
R. A.
Sinton
, and
A.
Kimmerle
, “
An updated analysis to the WCT-120 QSSPC measurement system using advanced device physics
” in
Proceedings of the 28th European Photovoltaic Solar Energy Conference
(
2013
), pp.
1521
1523
.
12.
P.
Palinginis
,
C.
Kusterer
,
S.
Steckemetz
,
R.
Köhler
,
R.
Härtwig
,
T.
Weber
,
M.
Müller
,
G.
Fischer
,
H.
Neuhaus
, “
Pioneering the industrialization of PERC technology: A review of the development of mono- and bifacial PERC solar cells at SolarWorld
”, in
Photovoltaics International
, Volume
42
(
2019
), pp.
51
72
.
This content is only available via PDF.