Recording bioelectric signals at high spatio-temporal resolution with low invasiveness is a major challenge in the field of bio-nanotechnology. Insofar, bioactive signals have been recorded with improved signal-to-noise ratio from cells in culture using arrays of nanopillars. However, production of such nanoscale electrodes is both time-consuming, pricey and might be only scarcely compatible with the Complementary Metal-Oxide-Semiconductor integrated circuits (CMOS-IC) technology. To take a step forward, we introduced an innovative approach to fabricate small, high-density Silicon NanoWires (SiNWs) with a fast, relatively inexpensive and low-temperature (200 °C) method. Growth of such SiNWs is compatible with ICs, thus theoretically allowing on-site amplification of bioelectric signals from living cells in tight contact. Here, we report our preliminary results showing biocompatibility and neutrality of SiNWs used as seeding substrate for cells in culture. With this technology, we aim to produce a compact device allowing on-site, synched and high signal/noise recordings of a large amounts of biological signals from networks of excitable cells (e.g. neurons) or from different areas of a single cell surface, thus providing super-resolved descriptions of bioelectric waveforms at the microdomain level.

1.
B.
Sakmann
and
E.
Neher
,
Single-channel recording
(
Springer
,
New York
,
1995
).
2.
J.
Pine
,
J. Neurosci. Methods
2
(
1
),
19
31
(
1980
).
3.
W.
Gindl
,
H. S.
Gupta
,
T.
Schöberl
,
H. C.
Lichtenegger
and
P.
Fratz
,
Applied Physics A
79
(
8
),
2069
2073
(
2004
).
4.
D. S.
Peterka
,
H.
Takahashi
and
R.
Yuste
,
Neuron
69
(
1
),
9
21
(
2011
).
5.
A.
Obergrussberger
,
S.
Stölzle-Feix
,
N.
Becker
,
A.
Brüggemann
,
N.
Fertig
and
C.
Möller
,
Channels (Austin)
9
(
6
),
367
375
(
2015
).
7.
E. R.
Fossum
and
D. B.
Hondongwa
,
IEEE J. Electron Devices Soc.
2
(
3
),
33
43
(
2014
).
8.
B. P.
Timko
,
T.
Cohen-Karni
,
G.
Yu
,
Q.
Qin
,
B.
Tian
and
C. M.
Lieber
,
Nano Letters
,
9
(
2
),
914
918
(
2009
).
9.
X.
Duan
,
R.
Gao
,
P.
Xie
,
T.
Cohen-Karni
,
Q.
Qing
,
H. S.
Choe
,
B.
Tian
,
X.
Jiang
and
C. M.
Lieber
,
Nature Nanotechnology
7
(
3
),
174
179
(
2011
).
10.
C.
Xie
,
Z.
Lin
,
L.
Hanson
,
Y.
Cui
and
B.
Cui
,
Nature Nanotechnology
7
(
3
),
185
190
(
2012
).
11.
J.
Abbott
,
T.
Ye
,
L.
Qin
,
M.
Jorgolli
,
R. S.
Gertner
,
D.
Ham
and
H.
Park
,
Nature nanotechnology
12
(
5
),
460
466
(
2017
).
12.
M.
Dipalo
,
H.
Amin
,
L.
Lovato
,
F.
Moia
,
V.
Caprettini
,
G. C.
Messina
,
F.
Tantussi
,
L.
Berdondini
and
F.
De Angelis
,
Nano Letters
17
(
6
),
3932
3939
(
2017
).
13.
J.
Liu
,
H.
Tu
,
D.
Zhang
,
H.
Zheng
and
Y. L.
Li
,
BMC Neuroscience
13
(
129
) (
2012
).
14.
B. A.
Suter
,
M.
Migliore
and
G. M. G.
Shepherd
,
Cerebral Cortex
23
(
8
),
1965
1977
(
2013
).
15.
R. S.
Wagner
and
W. C.
Ellis
,
Applied Physics Letters
4
(
5
),
89
90
(
1964
).
16.
W.
Chen
,
P.
Pareige
,
C.
Castro
,
T.
Xu
,
B.
Grandidier
,
D.
Stiévenard
and
P. R. i
Cabarrocas
,
Journal of Applied Physics
118
(
10
),
104301
(
2015
).
17.
A.
Convertino
,
V.
Mussi
and
L.
Maiolo
,
Scientific Reports
6
,
25009
(
2016
).
18.
J. E.
Allen
,
E. R.
Hemesath
,
D. E.
Perea
,
J. L.
Lensch-Falk
,
Z. Y.
Li
,
F.
Yin
,
M. H.
Gass
,
P.
Wang
,
A. L.
Bleloch
,
R. E.
Palmer
and
L. J.
Lauhon
,
Nature Nanotechnology
3
(
3
),
168
173
(
2008
).
19.
B. V.
Schmidt
,
J. V.
Wittemann
,
S.
Senz
, and
U.
Go
,
Advanced Materials
21
,
2681
2702
(
2009
).
20.
R. W.
Olesinski
and
G. J.
Abbaschian
,
Bulletin of Alloy Phase Diagrams
5
,
273
276
(
1984
).
21.
F.
Li
,
J.
Lu
,
C. Y.
Wu
,
C.
Kaur
,
V.
Sivakumar
,
J.
Sun
,
S.
Li
and
E. A.
Ling
,
J. Neurochem.
106
(
5
),
2093
2105
(
2008
).
22.
S.
Rangaraju
1,
S. A.
Raza
,
A.
Pennati
,
Q.
Deng
,
E. B.
Dammer
,
D.
Duong
,
M. W.
Pennington
,
M. G.
Tansey
,
J. J.
Lah
,
R.
Betarbet
,
N. T.
Seyfried
and
A. I.
Levey
,
Journal of Neuroinflammation
14
(
1
):
128
(
2017
)
23.
24.
L. P.
Bernier
,
A. R.
Ase
,
S.
Chevallier
,
D.
Blais
,
Q.
Zhao
,
E.
Boué-Grabot
,
D.
Logothetis
and
P.
Séguéla
,
J. Neuroscience
28
(
48
),
12938
12945
(
2008
).
This content is only available via PDF.