Dispatchability is a key issue to increase the competitiveness of concentrating solar power plants. Thermochemical energy storage systems are a promising alternative to molten salt-based storage because of the higher energy storage density and the possibility of increasing the storage period. Among possible thermochemical systems, the Calcium-Looping process, based on the multicycle calcination-carbonation of CaCO3, is a main candidate to be integrated as energy storage system within a scenario of massive deployment of concentrating solar power plants. The present manuscript goes beyond previous works by developing an off-design model of the system that leads to a more accurate discussion on system size and plant efficiency. A capacity factor as high as 58% is calculated with lower mass of stored products than in commercial solar plants while the calculated solar-to-electric daily efficiency varies between 17.1% and 20.1%. Simulation results suggest an interesting attractive potential of the Calcium-Looping integration.

1.
National Renewable energy laboratory (NREL)
, “
Concentrating Solar Power Projects
,”
2017
.
2.
T.
Shimizu
,
T.
Hirama
,
H.
Hosoda
,
K.
Kitano
,
M.
Inagaki
, and
K.
Tejima
, “
A twin fluid-bed reactor for removal of CO2from combustion processes
,”
Chem. Eng. Res. Des.
, vol.
77
, no.
1
, pp.
62
68
, Jan.
1999
.
3.
European Solar Thermal Electricity Association (ESTELA)
, “
Solar Thermal Electricity Strategic research agenda 2020-2025
,” no. december,
2012
.
4.
R.
Chacartegui
,
A.
Alovisio
,
C.
Ortiz
,
J. M.
Valverde
,
V.
Verda
, and
J. A.
Becerra
, “
Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle
,”
Appl. Energy
, vol.
173
, pp.
589
605
, Jul.
2016
.
5.
W. E.
Wentworth
and
E.
Chen
, “
Simple thermal decomposition reactions for storage of solar thermal energy
,”
Sol. Energy
, vol.
18
, no.
3
, pp.
205
214
,
1976
.
6.
G.
Flamant
,
D.
Hernandez
,
C.
Bonet
, and
J. P.
Traverse
, “
Experimental aspects of the thermochemical conversion of solar energy; Decarbonation of CaCO3
,”
Sol. Energy
, vol.
24
, no.
4
, pp.
385
395
,
1980
.
7.
S. E. B.
Edwards
and
V.
Materić
, “
Calcium looping in solar power generation plants
,”
Sol. Energy
, vol.
86
, no.
9
, pp.
2494
2503
,
2012
.
8.
A.
Alovisio
,
R.
Chacartegui
,
C.
Ortiz
,
J. M.
Valverde
, and
V.
Verda
, “
Optimizing the CSP-Calcium Looping integration for Thermochemical Energy Storage
,”
Energy Convers. Manag.
, vol.
136
, pp.
85
98
,
2017
.
9.
C.
Ortiz
,
M. C.
Romano
,
J. M.
Valverde
,
M.
Binotti
, and
R.
Chacartegui
, “
Process integration of Calcium-Looping thermochemical energy storage system in concentrating solar power plants
,”
Energy
, vol.
155
, pp.
535
551
, Jul.
2018
.
10.
I.
Martínez
 et al, “
Review and research needs of Ca-Looping systems modelling for post-combustion CO2capture applications
,”
Int. J. Greenh. Gas Control
, vol.
50
, pp.
271
304
,
2016
.
11.
H. M.
Kvamsdal
,
M. C.
Romano
,
L.
van der Ham
,
D.
Bonalumi
,
P.
van Os
, and
E.
Goetheer
, “
Energetic evaluation of a power plant integrated with a piperazine-based CO 2 capture process
,”
Int. J. Greenh. Gas Control
, vol.
28
, pp.
343
355
, Sep.
2014
.
12.
National Renewable energy laboratory (NREL)
, “
SolarPILOT (Solar Power tower Integrated Layout and Optimization Tool
).”.
13.
J. S.
Kim
,
A.
Kumar
, and
C.
Corsi
, “
Design boundaries of large-scale falling particle receivers
,”
AIP Conf. Proc.
, vol.
1850
, pp.
1
9
,
2017
.
14.
E.
Casati
,
F.
Casella
, and
P.
Colonna
, “
Design of CSP plants with optimally operated thermal storage
,”
Sol. Energy
, vol.
116
, pp.
371
387
,
2015
.
15.
A.
Bayon
 et al, “
Techno-economic assessment of solid–gas thermochemical energy storage systems for solar thermal power applications
,”
Energy
, vol.
149
, pp.
473
484
,
2018
.
16.
Thermoflow Inc.
, “
Thermoflex, Fully-flexible design and simulation of conventional steam plants, combined cycles, and other thermal power systems
.”
Southborough, MA, USA
.
17.
A.
Patnode
, “
Simulation and performance evaluation of parabolic trough solar power plants
,”
Univ. Wisconsin-Madison
, vol. Master, pp.
5
271
,
2006
.
18.
European Comission
, “
Photovoltaic geographical information system (PVGIS
).”.
19.
IRENA
, “
Renewable Power Generation Costs in 2017
,”
2018
.
20.
Torresol
Energy
, “
Gemasolar plant
.” [Online]. Available: http://torresolenergy.com/en/gemasolar/. [Accessed: 01-Apr-2018].
21.
J. I.
Burgaleta
,
S.
Arias
, and
D.
Ramirez
, “
Gemasolar: The First Tower Thermosolar Commercial Plant with Molten Salt Storage System
,”
SolarPACES Int. Conf.
, no. Sept., pp.
11
14
,
2012
.
22.
P.
Lisbona
,
A.
Martínez
,
Y.
Lara
, and
L. M.
Romeo
, “
Integration of carbonate CO2 capture cycle and coal-fired power plants. A comparative study for different sorbents
,”
Energy and Fuels
, vol.
24
, no.
1
, pp.
728
736
,
2010
.
23.
C.
Parrado
,
A.
Marzo
,
E.
Fuentealba
, and
A. G.
Fernández
, “
2050 LCOE improvement using new molten salts for thermal energy storage in CSP plants
,”
Renew. Sustain. Energy Rev.
, vol.
57
, pp.
505
514
,
2016
.
24.
S.
Polimeni
,
M.
Binotti
,
L.
Moretti
, and
G.
Manzolini
, “
Comparison of sodium and KCl-MgCl2as heat transfer fluids in CSP solar tower with sCO2power cycles
,”
Sol. Energy
, vol.
162
, no. January, pp.
510
524
,
2018
.
This content is only available via PDF.