Packed bed systems have been proposed in the last years as a promising thermal energy storage alternative to reduce the levelized cost of electricity in concentrated solar power plants. However, although the interest of the scientific and industrial community in this thermal energy storage alternative is increasing, there is still a lack of a clear technology viability demonstration at a relevant scale. This is one of the main barriers this technology is facing to reach a complete deployment at commercial level. Aiming to take one step forward in the state of the art of the technology, in this work, a 400 kWht packed bed system has been tested in the Air Test Loop facility available at CIC Energigune with a double objective: the validation of the steel slag as low-cost and high-performing filler material on one hand, and to investigate the performance of the packed bed technology using air as heat transfer fluid under different charge, discharge and idle operational conditions, on the other hand. Furthermore, the experimental results have been validated with a computational fluid dynamics model that, in further steps of this work, will be used to investigate the techno-economic viability of the slag-based packed bed solution at a real industrial scale.

1.
H.
Zhang
,
J.
Baeyens
,
G.
Caceres
,
J.
Degrève
and
J.
Lv
,
Progress in Energy and Combustion Science
53
,
1
40
(
2016
).
2.
J.E.
Pacheco
,
S.K.
Showalter
and
W.J.
Kolb
,
Journal of Solar Energy Engineering
124
,
152
159
(
2002
).
3.
K.G.
Allen
,
T.W.
von Backstrom
,
D.G.
Kroger
and
A.F.M.
Kisters
,
Solar Energy Materials & Solar Cells
126
,
170
183
(
2014
).
4.
A.
Gutierrez
,
L.
Miró
,
A.
Gil
,
J.
Rodriguez-Aseguinolaza
,
C.
Barreneche
,
N.
Calvet
,
X.
Py
,
A.I.
Fernández
,
M.
Grágeda
,
S.
Ushak
and
L.F.
Cabeza
,
Renewable and Sustainable Energy Reviews
59
,
763
783
(
2016
).
5.
Y.
Grosu
,
I.
Ortega-Fernández
,
J. López
del Amo
and
A.
Faik
,
Applied Thermal Engineering
136
,
185
193
(
2018
).
6.
F.
Motte
,
Q.
Falcoz
,
E.
Veron
and
X.
Py
,
Applied Energy
155
,
14
22
(
2015
).
7.
R.
Tiskatine
,
A.
Eddemani
,
L.
Gourdo
,
B.
Abnay
,
A.
Ihlal
,
A.
Aharoune
and
L.
Bouirden
,
Applied Energy
171
,
243
255
(
2016
).
8.
T.
Esence
,
A.
Bruch
,
S.
Molina
and
B.
Stutz
,
Solar Energy
,
153
(
2017
)
628
654
.
10.
I.
Ortega-Fernández
,
N.
Calvet
,
A.
Gil
,
J.
Rodríguez
,
A.
Faik
and
B.
D’Aguanno
,
Energy
89
,
601
609
(
2015
).
11.
I.
Ortega-Fernández
,
I.
Loroño
,
A.
Faik
,
I.
Uriz
,
J.
Rodríguez-Aseguinolaza
and
B.
D’Aguanno
, “
Parametric analysis of a packed bed thermal energy storage system
,” in
SolarPACES 2016
,
AIP Conference Proceedings
1850
,
080021
.
12.
Superwool HT® blanket datasheet
(http://www.morganthermalceramics.com/)
13.
D.A.
Nield
and
A.
Bejan
, “
Convection in Porous Media
”,
Springer Science
, (
2013
).
14.
S.
Ergun
,
Chemical Engineering Progress
48
,
89
94
(
1952
).
15.
I.
Ortega-Fernández
,
S.A.
Zavattoni
,
J.
Rodríguez-Aseguinolaza
,
B.
D’Aguanno
and
M.C.
Barbato
,
Applied Energy
205
,
280
293
(
2017
).
16.
S.
Yagi
and
D.
Kunii
,
A.I. Ch. E Journal
3
,
373
381
(
1957
).
17.
D.
Kunii
and
J.M.
Smith
,
A.I. Ch. E Journal
6
,
71
78
(
1960
).
18.
N.
Wakao
and
S.
Kaguei
, “Heat and mass transfer in packed beds” (
Gordon and Breach
,
1982
).
19.
Ansys Fluent v17.2 Theory Guide.
This content is only available via PDF.