This study examines the differences in direct normal irradiance (DNI) in two versions of the National Solar Radiation Database (NSRDB) produced by the National Renewable Energy Laboratory (NREL). NSRDB V3 of the NSRDB includes significant changes to various parts of the radiative transfer model and inputs to the model compared to NSRDB V2. The changes in NSRDB V3 resulted in lower uncertainty than NSRDB V2. The study quantified the uncertainty and the spatial and temporal variability under clear-sky conditions. The uncertainty estimation was performed using a standardized method, The Guide to the Expression of Uncertainty in Measurement (GUM). The evaluation of the accuracy of the NSRDB was conducted using high-quality ground-measurements for seven National Oceanic and Atmospheric Administration Surface Radiation Budget Network (SURFRAD) stations for 1998–2015.

1.
M.
Sengupta
,
A.
Habte
,
C.
Gueymard
,
S.
Wilbert
, and
D.
Renné
. (
2017
).
Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Second Edition.
2.
J.
Polo
,
S.
Wilbert
,
J.A.
Ruiz-Arias
,
R.
Meyer
,
C.
Gueymard
,
M.
Súri
,
L.
Martín
,
T.
Mieslinger
,
P.
Blanc
,
I.
Grant
,
J.
Boland
,
P.
Ineichen
,
J.
Remund
,
R.
Escobar
,
A.
Troccoli
,
M.
Sengupta
,
K.P.
Nielsen
,
D.
Renne
,
N.
Geuder
, and
T.
Cebecauer
,
Preliminary survey on site-adaptation techniques for satellite-derived and reanalysis solar radiation datasets
.
Solar Energy
132
,
25
37
(
2016
).
3.
Xie
,
Y.
,
M.
Sengupta
, and
J.
Dudhia
.
2016
. “
A Fast All-Sky Radiation Model for Solar Applications (FARMS): Algorithm and Performance Evaluation
.”
Solar Energy
135
:
435
445
.
4.
M.
Sengupta
,
Y.
Xie
,
A.
Lopez
,
A.
Habte
,
G.
Maclaurin
and
J.
Shelby
, “
The National Solar Radiation Data Base
,”
Renew. Sustain. Energy Rev.
(
2018
).
5.
Y.
Xie
,
M.
Sengupta
and
J.
Dudhia
, “
A Fast All-Sky Radiation Model for Solar Applications (FARMS): Algorithm and performance evaluation
,”
Solar Energy
135
:
435
445
(
2016
).
6.
Gelaro
R
,
McCarty
W
,
Suárez
M
,
Todling
R
,
Molod
A
,
Takacs
L
, et al. 
The modern-era retrospective analysis for research and applications, version 2 (MERRA-2
).
J. Climate.
2017
;
30
:
5419
54
.
7.
JCGM 100:2008 (GUM 1995 with minor corrections)
,
Evaluation of measurement data – Guide to the expression of uncertainty in measurement
8.
A.
Habte
,
M.
Sengupta
and
A.
Lopez
, “
Evaluation of the National Solar Radiation Database (NSRDB): 1998-2015
,” NREL/TP-5D00-67722,
2017
.
9.
C.A.
Gueymard
,
Temporal variability in direct and global irradiance at various time scales as affected by aerosols
,
Solar Energy
86
,
3544
3553
(
2012
).
10.
C.A.
Gueymard
,
A.
Habte
and
M.
Sengupta
,
Reducing Uncertainties in large-scale solar resource data: The impact of aerosols
,
J. Photovoltaics (in press)
.
11.
J.A.
Ruiz-Arias
,
C.A.
Gueymard
,
F.J.
Santos-Alamillos
,
S.
Quesada-Ruiz
and
D.
Pozo-Vázquez
,
Bias induced by the AOD representation time scale in long-term solar radiation calculations
.
Part 2: Impact on long-term solar irradiance predictions, Solar Energy
135
,
625
632
(
2016
).
12.
J.A.
Ruiz-Arias
,
C.A.
Gueymard
,
F.J.
Santos-Alamillos
and
D.
Pozo-Vázquez
,
Worldwide impact of aerosol’s time scale on the predicted long-term concentrating solar power potential
,
Nature Scientific Reports
6
:
30546
, DOI: .
13.
J.A.
Ruiz-Arias
,
C.A.
Gueymard
,
F.J.
Santos-Alamillos
,
S.
Quesada-Ruiz
and
D.
Pozo-Vázquez
,
Bias induced by the AOD representation time scale in long-term solar radiation calculations
.
Part 1: Sensitivity of the AOD distribution to the representation time scale, Solar Energy
137
,
608
620
(
2016
).
This content is only available via PDF.