Solar power forecasting plays a critical role in power-system management, scheduling, and dispatch operations. Accurate forecasts of direct normal irradiance (DNI) are essential for an optimized operation strategy of concentrating solar thermal (CST) systems, particularly during partly cloudy days, due to solar intermittency. In this work, short-term forecasts from the radiative scheme McRad (Cycle 41R2) included in the Integrated Forecasting System (IFS), the global numerical weather prediction model of the European Centre for Medium-Range Weather Forecasts (ECMWF), together with in-situ ground-based measurements, are used in a simulated linear focus parabolic-trough power system through the System Advisor Model (SAM). Results are part of a preliminary analysis concerning the value of DNI predictions from the IFS for operation improvement of a CST system with similar configurations as the Andasol 3 CST power plant. For a 365-day period, the present results show high correlations between predictions of energy to grid based on measurements and IFS forecasts mainly for daily values (≈0.94), while lower correlations are obtained for hourly values (≈0.88), due to cloud representation of the IFS during overcast periods, leading to small deviations with respect to those from measurements. Moreover, to measure the forecasting skill of the IFS, daily and hourly skill scores based on local measurements and a persistence model are obtained (≈0.66 and ≈0.51, respectively), demonstrating that the IFS has a good overall performance. These aspects show the value that forecasted DNI has in the operation management of CST power systems, and, consequently, in the electricity market.

1.
P.
Blanc
,
B.
Espinar
,
N.
Geuder
,
C.
Gueymard
,
R.
Meyer
,
R.
Pitz-Paal
,
B.
Reinhardt
,
D.
Renné
,
M.
Sengupta
,
L.
Wald
,
S.
Wilbert
, “
Direct Normal Irradiance Related Definitions and Applications: The Circumsolar Issue
”,
Solar Energy
,
110
, pp.
561
577
, doi: ,
2014
.
2.
M.
Schroedter-Homscheidt
,
A.
Benedetti
, and
N.
Killius
. “
Verification of ECMWF and ECMWF/MACC’s Global and Direct Irradiance Forecasts with Respect to Solar Electricity Production Forecasts
”,
Meteorologische Zeitschrift, PrePub Article
, doi: ,
2016
.
3.
M.
Collares-Pereira
,
A.
Rabl
. “
Simple Procedure for Predicting Long Term Average Performance of Nonconcentrating and Concentrating Solar Collectors
”,
Solar Energy
,
23
, pp.
235
253
,
1979
.
4.
W.
Law
,
Edward
and
Prasad
,
Abhnil
and
Kay
,
Merlinde
and
Taylor
,
Robert
. “
Direct Normal Irradiance Forecasting and Its Application to Concentrated Solar Thermal Output Forecasting – A Review
”,
Solar Energy
,
108
, pp.
287
307
, doi: ,
2014
.
5.
L.
Ramirez
,
J. M.
Vindel
, “
Forecasting and Nowcasting of DNI for Concentrating Solar Thermal Systems
”,
Advances in Concentrating Solar Thermal Research and Technology
, Chapter 13, pp.
294
310
, doi:,
2017
.
6.
J.
Fan
, “
Review of Aerosol-Cloud Interaction: Mechanisms, Significance, and Challenges
.
American meteorological Society
, Vol.
73
, pp.
4221
4252
. doi: ,
2016
.
7.
S.
Quesada-Ruiz
,
Y.
Chu
,
J.
Tovar-Pescador
,
H. T. C
Pedro
,
C. F. M.
Coimbra
, “
Cloud-Tracking Methodology for Intra-Hour DNI Forecasting
”,
Solar Energy
,
102
, pp.
267
275
. doi: ,
2014
.
8.
R.
Conceição
,
H. G.
Silva
,
J.
Mirão
,
M.
Gostein
,
L.
Fialho
,
L.
Navarte
,
M.
Collares-Pereira
, “
Saharan Dust Transport to Europe and its Impact on the Photovoltaic Performance: A Case Study of Soiling in Portugal
”,
Solar Energy
,
160
, pp.
94
102
. doi: ,
2018
.
9.
P. G.
Kosmopoulos
,
S.
Kazadzis
,
M.
Taylor
,
E.
Athanasopoulou
,
O.
Speyer
,
P. I.
Raptis
,
E.
Marinou
,
E.
Proestakis
,
S.
Solomos
,
E.
Gerasopoulous
,
V.
Amiridis
,
A.
Bais
, and
C.
Kontoes
, “
Dust Impact on Surface Solar Irradiance Assessed with Model Simulations, Satellite Observations and Ground-based Measurements
”,
Atmos. Meas. Tech. Discuss
, doi: ,
2017
.
10.
A.
Troccoli
,
J.-J.
Morcrette
, “
Skill of Direct Solar Radiation Predicted by the ECMWF Global Atmospheric Model over Australia. American Meteorology Society
, pp.
2571
2587
. doi: ,
2014
.
11.
M.
Wittman
,
H.
Breitkreuz
,
M.
Schroedter-Homscheidt
, and
M.
Eck
, “
Case Studies on the Use of Solar Irradiance Forecast for Optimized Operation Strategies of Solar Thermal Power Plants
”,
IEEE J-STARS
,
1
, No.1, doi: ,
2008
.
12.
N.
Blair
,
A.
Dobos
,
J.
Freeman
,
T.
Neises
,
M.
Wagner
,
T.
Ferguson
,
P.
Gilman
,
S.
Janzou
, “
System Advisor Model, SAM 2014.1.14: General Description. NREL/TP-6A20-61019
”,
National Renewable Energy Laboratory, Golden, CO
,
2014
. Accessed October 31, 2016.
13.
A.
Cavaco
,
H. G.
Silva
,
P.
Canhoto
,
T.
Osório
,
M.
Collares-Pereira
, “
Progresses in DNI Measurements in Southern Portugal
”,
Solar Paces 2017, AIP Conf. Proc.
,
2017
. Submitted for publication.
14.
F.
Lopes
,
H. G.
Silva
,
R.
Salgado
,
M.
Potes
,
K.
Nicoll
,
R. G.
Harrison
, “
Atmospheric Electric Field Measurements Near a Fresh Water Reservoir and the Formation of the Lake Breeze
”,
Tellus
,
68
:
31592
. doi: ,
2016
.
15.
ISO 9059:1990
,
Solar energy – Calibration of field pyrheliometers by comparison to a reference pyrheliometer
,
International Organization for Standardization
(www.iso.org/standard/16628.html),
2014
.
16.
ISO 9060:1990
,
Solar energy, Specification and classifications of instruments for measuring hemispherical solar and direct solar radiation
,
International Organization for Standardization
(www.iso.org/standard/16629.html),
2003
.
17.
P.
Canhoto
, “Preliminary Analysis of Irradiance Data for the Generation of a Typical Solar Radiation year for Évora, Portugal”,
Technical Report
,
Institute of Earth Sciences, University of Évora
,
Évora, Portugal
. doi: , March
2016
.
18.
F. M.
Lopes
,
H. G.
Silva
,
R.
Salgado
,
A.
Cavaco
,
P.
Canhoto
,
M.
Collares-Pereira
, “
Short-term Forecasts of GHI and DNI for Solar Energy Systems Operation: Assessment of the ECMWF Integrated Forecasting System in Southern Portugal
”,
Solar Energy
,
170
, pp.
14
30
, doi: ,
2018
.
19.
The System Advisor Model (SAM)
, version 2017.9.5, www.sam.nrel.gov/content/downloads,
NREL
2018
.
20.
The Andasol 3 CST project (Granada, Spain)
, www.nrel.gov/csp/solarpaces/project_detail.cfm/projectID=117,
NREL
2018
.
21.
C. N.
Long
, and
E. G.
Dutton
: BSRN Global Network recommended QC tests, V2.x,
Bremerhaven
,
PANGAEA
,
2010
.
22.
S. K.
Solanki
,
N. A.
Krivova
,
J. D.
Haigh
, “
Solar Irradiance Variability and Climate
”,
Annu. Rev. Astrono. Astrophys
,
51
, pp.
311
351
. doi: ,
2013
.
23.
Kalogirou
,
S.A.
,
2014
.
Solar Energy Engineering: Processes and Systems
, second ed. Chapter 2,
51
63
,
Elsevier.
ISBN: 978-0123972705.
24.
C.
Coimbra
,
J.
Kleissl
, and
R.
Marquez
, “Overview of Solar Forecasting Methods and a Metric for Accuracy Evaluation”,
Solar Resource Assessment and Forecasting
, Cp 8,
183
185
,
Elsevier
,
Waltham, Massachusetts
.
25.
R.
Perez
,
E.
Lorenz
,
S.
Pelland
,
M.
Beauharnois
,
G. V.
Knowe
,
K.
Hemker
 Jr.
,
D.
Heinemann
,
J.
Remund
,
S. C.
Müller
,
W.
Traunmüller
,
G.
Steinmauer
,
D.
Pozo
,
J. A.
Ruiz-Arias
,
V.
Lara-Fanego
,
L.
Ramirez-Santigosa
,
M.
Gaston-Romero
,
L. M.
Pomares
, “
Comparison of Numerical Weather Prediction Solar Irradiance Forecasts in the US, Canada and Europe
”,
Solar Energy
,
94
, pp.
305
326
, doi: ,
2013
.
26.
European Centre for Medium-Range Weather Forecasts (ECMWF) Newsletter
2017
, Shinfield Park, Reading,
RG2 9AX
,
England
.
This content is only available via PDF.