A bladed receiver design concept is presented which offers a >2% increase in overall receiver efficiency after considering spillage, reflection, emission and convection losses, based on an integrated optical-thermal model, for a design where the working fluid is conventional molten salt operating in the standard 290–565°C temperature range. A novel testing methodology is described, using air and water to test the receiver when molten salt facilities are not available. Technoeconomic analysis shows that the receiver could achieve a 4 AUD/MWhe saving in levelised cost of energy, but only if the bladed receiver design can be implemented at no additional cost.

1.
C. K.
Ho
,
J. M.
Christian
and
J. D.
Pye
(
2014
). “
Bladed solar thermal receivers for concentrating solar power
”, United States Provisional Patent No. 14/535,100 (filed 8 November 2013).
2.
C. K.
Ho
,
J. D.
Ortega
,
J. M.
Christian
,
J. E.
Yellowhair
,
D.
Ray
,
J.
Kelton
,
G.
Peacock
,
C.
Andraka
and
S.
Shinde
(
2016
). “
Fractal-Like Materials Design with Optimized Radiative Properties for High-Efficiency Solar Energy Conversion
”, Tech. report SAND2016-9526,
Sandia National Laboratories.
3.
J.
Pye
,
J.
Coventry
,
C.
Ho
,
J.
Yellowhair
,
I.
Nock
,
Y.
Wang
,
E.
Abbasi
,
J.
Christian
,
J.
Ortega
and
G.
Hughes
(
2017
). “
Optical and thermal performance of bladed receivers
”. In
SolarPACES 2016
(
AIP Conference Proceedings
),
Santiago de Chile
.
4.
L. L.
Vant-Hull
,
C. R.
Applebaugh
,
J. P.
Colaco
,
C.
Easton
,
S.
Gronich
,
R. W.
Hallet
,
A.
Hildebrandt
,
F.
Lipps
,
R.
McFee
,
J.
Raetz
and
W.
Rigdon
(
1974
). “
Solar Thermal Power Systems based on Optical Transmission (A Feasibility Study
)”,
Semi-annual progress report to the US National Science Foundation NSF/RANN/SE/GI- 39456/PR/73/4
,
University of Houston and McDonnell Douglas Astronautics West
,
Houston, Texas
.
5.
M.
Wagner
,
Z.
Ma
,
J.
Martinek
,
T.
Neises
and
C.
Turchi
(
2014
). “
Systems and methods for direct thermal receivers using near blackbody configurations
”, United States Provisional Patent No. 61/993,671 (filed 15 May 2014).
6.
M.
Puppe
,
S.
Giuliano
,
C.
Frantz
,
R.
Uhlig
,
R.
Flesch
,
R.
Schumacher
,
W.
Ibraheem
,
S.
Schmalz
,
B.
Waldmann
,
C.
Guder
,
D.
Peter
,
C.
Schwager
,
C. T.
Boura
,
S.
Alexopoulos
,
M.
Spiegel
,
J.
Wortmann
,
M.
Hinrichs
,
M.
Engelhardt
,
M.
Aust
and
H.
Hattendorf
(
2017
). “
Techno-Economic Optimization of Molten Salt Solar Tower Plants
”. In
SolarPACES 2017
,
Santiago de Chile
.
7.
M.
Lubkoll
,
T.
von Backström
,
T.
Harms
and
D.
Kröger
(
2015
). “
Initial Analysis on the Novel Spiky Central Receiver Air Pre-heater (SCRAP) Pressurized Air Receiver
”. In
SolarPACES 2014 (Energy Procedia)
,
Beijing
.
8.
R.
Osuna
,
R.
Olavarrıa
,
R.
Morillo
,
M.
Sánchez
,
F.
Cantero
,
V.
Fernández-Quero
,
P.
Robles
,
T.
López
,
A.
Esteban
,
F.
Céron
,
J.
Talegón
,
M.
Romero
,
F.
Téllez
,
M.-J.
Marcos
,
D.
Martínez
,
A.
Valverde
,
R.
Monterreal
,
R.
Pitz-Paal
,
G.
Brakmann
,
V.
Ruiz
and
M. S.
Pietro Menna
i (
2006
). “
PS10, Construction of a 11MW solar thermal tower plant in Seville, Spain
”. In
Solar-PACES 2006
.
9.
J. E.
Pacheco
(
2002
). “
Final Test and Evaluation Results from the Solar Two Project
”, Technical report SAND2002-0120,
Sandia National Laboratories
,
Albuquerque, New Mexico
.
10.
Y.
Wang
,
C.-A.
Asselineau
,
J.
Coventry
and
J.
Pye
(
2016
). “
Optical performance of bladed receivers for CSP systems
”. In
Proceedings of the ASME 2016 Power and Energy Conference
,
Charlotte, North Carolina
.
11.
Y.
Wang
,
J.
Coventry
and
J.
Pye
(
2018
). “
Optical and Radiation Considerations in Bladed Receiver Designs for Central Tower Systems
”. In
SolarPACES 2018 (accepted oral)
,
Casablanca
.
12.
M. J.
Wagner
and
T.
Wendelin
(
2018
).
Sol. Energy
171
,
185
196
.
13.
J. F.
Torres
,
F.
Ganadi
,
M.
Arjomandi
and
J.
Pye
(
2018
). “
Convective Heat Loss from a Bladed Solar Receiver
”. In
SolarPACES 2018 (accepted oral)
,
Casablanca
.
14.
J. F.
Torres
,
F.
Ghanadi
,
I.
Nock
,
M.
Arjomandi
and
J.
Pye
(
2018
).
Int. J. Heat Mass Transfer
119
,
418
432
.
15.
I.
Nock
,
W.
Logie
,
J.
Coventry
and
J.
Pye
(
2016
). “
A Computational Evaluation of Convective Losses from Bladed Solar Thermal Receivers
”. In
Proceedings of the Asia-Pacific Solar Research Conference
,
Canberra
.
16.
C. K.
Ho
,
A. R.
Mahoney
,
A.
Ambrosini
,
M.
Bencomo
,
A.
Hall
and
T. N.
Lambert
(
2013
).
J. Sol. Energy Eng.
136
,
014502
.
17.
J.
Pye
,
M.
Zheng
,
J.
Zapata
,
C.-A.
Asselineau
and
J.
Coventry
(
2014
). “
An exergy analysis of tubular solar-thermal receivers with different working fluids
”. In
Proceedings of SolarPACES 2014
,
Beijing
.
18.
J.
Pye
,
G.
Hughes
,
E.
Abbasi-Shavazi
,
C.-A.
Asselineau
,
G.
Burgess
,
J.
Coventry
,
W.
Logie
,
F.
Venn
and
J.
Zapata
(
2015
). “
Development of a Higher-Efficiency Tubular Cavity Receiver for Direct Steam Generation on a Dish Concentrator
”. In
SolarPACES 2015
,
Cape Town
.
19.
J.
Pye
,
J.
Coventry
,
F.
Venn
,
J.
Zapata
,
E.
Abbasi
,
C.-A.
Asselineau
,
G.
Burgess
,
G.
Hughes
and
W.
Logie
(
2016
). “
Experimental Testing of a High-Flux Cavity Receiver
”. In
Proceedings of SolarPACES 2016
.
20.
B.
Kelly
(
2010
). “
Advanced Thermal Storage for Central Receivers with Supercritical Coolants
”, Tech. Report DE-FG36-08GO18149,
Abengoa Solar
.
21.
M.
Wagner
and
G.
Zhu
(
2011
). “
A Generic CSP Performance Model for NREL’s System Advisor Model
”. In
SolarPACES 2011
,
Granada, Spain
.
22.
P.
Scott
,
A. de la Calle
Alonso
,
J. T.
Hinkley
and
J.
Pye
(
2016
). “
SolarTherm: A flexible Modelica-based simulator for CSP systems
”. In
SolarPACES 2016
(
AIP Conference Proceedings
),
Abu Dhabi
.
This content is only available via PDF.