A bladed receiver design concept is presented which offers a >2% increase in overall receiver efficiency after considering spillage, reflection, emission and convection losses, based on an integrated optical-thermal model, for a design where the working fluid is conventional molten salt operating in the standard 290–565°C temperature range. A novel testing methodology is described, using air and water to test the receiver when molten salt facilities are not available. Technoeconomic analysis shows that the receiver could achieve a 4 AUD/MWhe saving in levelised cost of energy, but only if the bladed receiver design can be implemented at no additional cost.
REFERENCES
1.
C. K.
Ho
, J. M.
Christian
and J. D.
Pye
(2014
). “Bladed solar thermal receivers for concentrating solar power
”, United States Provisional Patent No. 14/535,100 (filed 8 November 2013).2.
C. K.
Ho
, J. D.
Ortega
, J. M.
Christian
, J. E.
Yellowhair
, D.
Ray
, J.
Kelton
, G.
Peacock
, C.
Andraka
and S.
Shinde
(2016
). “Fractal-Like Materials Design with Optimized Radiative Properties for High-Efficiency Solar Energy Conversion
”, Tech. report SAND2016-9526, Sandia National Laboratories.
3.
J.
Pye
, J.
Coventry
, C.
Ho
, J.
Yellowhair
, I.
Nock
, Y.
Wang
, E.
Abbasi
, J.
Christian
, J.
Ortega
and G.
Hughes
(2017
). “Optical and thermal performance of bladed receivers
”. In SolarPACES 2016
(AIP Conference Proceedings
), Santiago de Chile
.4.
L. L.
Vant-Hull
, C. R.
Applebaugh
, J. P.
Colaco
, C.
Easton
, S.
Gronich
, R. W.
Hallet
, A.
Hildebrandt
, F.
Lipps
, R.
McFee
, J.
Raetz
and W.
Rigdon
(1974
). “Solar Thermal Power Systems based on Optical Transmission (A Feasibility Study
)”, Semi-annual progress report to the US National Science Foundation NSF/RANN/SE/GI- 39456/PR/73/4
, University of Houston and McDonnell Douglas Astronautics West
, Houston, Texas
.5.
M.
Wagner
, Z.
Ma
, J.
Martinek
, T.
Neises
and C.
Turchi
(2014
). “Systems and methods for direct thermal receivers using near blackbody configurations
”, United States Provisional Patent No. 61/993,671 (filed 15 May 2014).6.
M.
Puppe
, S.
Giuliano
, C.
Frantz
, R.
Uhlig
, R.
Flesch
, R.
Schumacher
, W.
Ibraheem
, S.
Schmalz
, B.
Waldmann
, C.
Guder
, D.
Peter
, C.
Schwager
, C. T.
Boura
, S.
Alexopoulos
, M.
Spiegel
, J.
Wortmann
, M.
Hinrichs
, M.
Engelhardt
, M.
Aust
and H.
Hattendorf
(2017
). “Techno-Economic Optimization of Molten Salt Solar Tower Plants
”. In SolarPACES 2017
, Santiago de Chile
.7.
M.
Lubkoll
, T.
von Backström
, T.
Harms
and D.
Kröger
(2015
). “Initial Analysis on the Novel Spiky Central Receiver Air Pre-heater (SCRAP) Pressurized Air Receiver
”. In SolarPACES 2014 (Energy Procedia)
, Beijing
.8.
R.
Osuna
, R.
Olavarrıa
, R.
Morillo
, M.
Sánchez
, F.
Cantero
, V.
Fernández-Quero
, P.
Robles
, T.
López
, A.
Esteban
, F.
Céron
, J.
Talegón
, M.
Romero
, F.
Téllez
, M.-J.
Marcos
, D.
Martínez
, A.
Valverde
, R.
Monterreal
, R.
Pitz-Paal
, G.
Brakmann
, V.
Ruiz
and M. S.
Pietro Menna
i (2006
). “PS10, Construction of a 11MW solar thermal tower plant in Seville, Spain
”. In Solar-PACES 2006
.9.
J. E.
Pacheco
(2002
). “Final Test and Evaluation Results from the Solar Two Project
”, Technical report SAND2002-0120, Sandia National Laboratories
, Albuquerque, New Mexico
.10.
Y.
Wang
, C.-A.
Asselineau
, J.
Coventry
and J.
Pye
(2016
). “Optical performance of bladed receivers for CSP systems
”. In Proceedings of the ASME 2016 Power and Energy Conference
, Charlotte, North Carolina
.11.
Y.
Wang
, J.
Coventry
and J.
Pye
(2018
). “Optical and Radiation Considerations in Bladed Receiver Designs for Central Tower Systems
”. In SolarPACES 2018 (accepted oral)
, Casablanca
.12.
M. J.
Wagner
and T.
Wendelin
(2018
). Sol. Energy
171
, 185
–196
.13.
J. F.
Torres
, F.
Ganadi
, M.
Arjomandi
and J.
Pye
(2018
). “Convective Heat Loss from a Bladed Solar Receiver
”. In SolarPACES 2018 (accepted oral)
, Casablanca
.14.
J. F.
Torres
, F.
Ghanadi
, I.
Nock
, M.
Arjomandi
and J.
Pye
(2018
). Int. J. Heat Mass Transfer
119
, 418
–432
.15.
I.
Nock
, W.
Logie
, J.
Coventry
and J.
Pye
(2016
). “A Computational Evaluation of Convective Losses from Bladed Solar Thermal Receivers
”. In Proceedings of the Asia-Pacific Solar Research Conference
, Canberra
.16.
C. K.
Ho
, A. R.
Mahoney
, A.
Ambrosini
, M.
Bencomo
, A.
Hall
and T. N.
Lambert
(2013
). J. Sol. Energy Eng.
136
, 014502
.17.
J.
Pye
, M.
Zheng
, J.
Zapata
, C.-A.
Asselineau
and J.
Coventry
(2014
). “An exergy analysis of tubular solar-thermal receivers with different working fluids
”. In Proceedings of SolarPACES 2014
, Beijing
.18.
J.
Pye
, G.
Hughes
, E.
Abbasi-Shavazi
, C.-A.
Asselineau
, G.
Burgess
, J.
Coventry
, W.
Logie
, F.
Venn
and J.
Zapata
(2015
). “Development of a Higher-Efficiency Tubular Cavity Receiver for Direct Steam Generation on a Dish Concentrator
”. In SolarPACES 2015
, Cape Town
.19.
J.
Pye
, J.
Coventry
, F.
Venn
, J.
Zapata
, E.
Abbasi
, C.-A.
Asselineau
, G.
Burgess
, G.
Hughes
and W.
Logie
(2016
). “Experimental Testing of a High-Flux Cavity Receiver
”. In Proceedings of SolarPACES 2016
.20.
B.
Kelly
(2010
). “Advanced Thermal Storage for Central Receivers with Supercritical Coolants
”, Tech. Report DE-FG36-08GO18149, Abengoa Solar
.21.
M.
Wagner
and G.
Zhu
(2011
). “A Generic CSP Performance Model for NREL’s System Advisor Model
”. In SolarPACES 2011
, Granada, Spain
.22.
P.
Scott
, A. de la Calle
Alonso
, J. T.
Hinkley
and J.
Pye
(2016
). “SolarTherm: A flexible Modelica-based simulator for CSP systems
”. In SolarPACES 2016
(AIP Conference Proceedings
), Abu Dhabi
.
This content is only available via PDF.
© 2019 Author(s).
2019
Author(s)