This paper presents a thermo-economic analysis of a hypothesized concentrated solar power (CSP) tower plant with molten salt thermal energy storage (TES) located in the Atacama Desert in Chile with the aim of serving as input for the Solar Committee to better establish public policy programs to increase the competitiveness of CSP in Chile. The study focuses on an optimal plant in terms of size and configuration for expected conditions of the Chilean electricity market in 2018 and 2030. An ideal CSP+TES configuration to complement the electricity pool market from a grid point of view was obtained for each year. An exergetic study was performed for each configuration under assumed annual operation conditions and a thermos-economic analysis was done considering specific costs per component. Thermo-economic indicators were obtained allowing to define a priority hierarchy of specific techno-economical improvements that can be done at plant and component level to maximize the competitiveness of CSP projects in the Chilean market. A sensitivity analysis was performed obtaining the impact of efficiency improvements and capex reductions per component on the Levelized Cost of Energy (LCOE). The maximum allowable trade-off limit for each technical improvement (capex increase or plant factor reduction) was calculated.

1.
Desierto de Atacama
.
Comité Solar
(
2017
). Available at: http://www.comitesolar.cl/comite-solar/desierto-de-atacama/. (Accessed: 24th August 2018)
2.
Coordinador Electrico Nacional » Reporte anual.
Available at: https://www.coordinador.cl/informe-documento/reportes/731-2/. (Accessed: 24th August 2018)
3.
Reporte Mensual y Reporte ERNC Sector Energético Julio 2018.
Available at: https://www.cne.cl/2018/01/21/reporte-mensual-julio-2016-sector-energetico/. (Accessed: 24th August 2018)
4.
Global Initiatives
.
Comité Solar
(
2017
). Available at: http://www.comitesolar.cl/english/solar-road-map/global-initiatives/. (Accessed: 24th August 2018)
5.
Kumar
,
R.
A critical review on energy, exergy, exergoeconomic and economic (4-E) analysis of thermal power plants
.
Engineering Science and Technology, an International Journal
20
,
283
292
(
2017
).
6.
Xu
,
C.
,
Wang
,
Z.
,
Li
,
X.
&
Sun
,
F.
Energy and exergy analysis of solar power tower plants
.
Applied Thermal Engineering
31
,
3904
3913
(
2011
).
7.
Modi
,
A.
&
Haglind
,
F.
Performance analysis of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation
.
Applied Thermal Engineering
65
,
201
208
(
2014
).
8.
Soltani
,
R.
 et al. 
Multi-objective optimization of a solar-hybrid cogeneration cycle: Application to CGAM problem
.
Energy Conversion and Management
81
,
60
71
(
2014
).
9.
Toro
,
C.
,
Rocco
,
M. V.
&
Colombo
,
E.
Exergy and thermoeconomic analyses of central receiver concentrated solar plants using air as heat transfer fluid
.
Energies
9
,
885
(
2016
).
10.
Gómez-Hernández
,
J.
,
González-Gómez
,
P. A.
,
Briongos
,
J. V.
&
Santana
,
D.
Influence of the steam generator on the exergetic and exergoeconomic analysis of solar tower plants
.
Energy
145
,
313
328
(
2018
).
11.
Gallardo
. “
Factores Críticos para el desarrollo CSP en el desierto de Atacama
”.
Comité Solar
(
2017
). Available at: http://www.comitesolar.cl/english/documents/. (Accessed: 24th August 2018)
12.
Ministerio de Energía - Planificación Estratégica
. Available at: http://pelp.minenergia.cl/informacion-del-proceso/insumos-para-proyecciones. (Accessed: 24th August 2018)
13.
Energia
,
S. I.-C. N. Precio Medio de Mercado - Comisión Nacional de Energía.
14.
Kotas
,
T. J.
The Exergy Method of Thermal Plant Analysis
. (
Elsevier
,
2013
).
15.
Szargut
,
J.
Exergy Method: Technical and Ecological Applications
. (
WIT Press
,
2005
).
16.
Bejan
,
A.
,
Tsatsaronis
,
G.
&
Moran
,
M.
Thermal design and optimization
. (
John Wiley & Sons
,
1996
).
17.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
&
Lemort
,
V.
Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
.
Ind. Eng. Chem. Res.
53
,
2498
2508
(
2014
).
18.
Leiva-Illanes
,
R.
,
Escobar
,
R.
,
Cardemil
,
J. M.
&
Alarcón-Padilla
,
D.-C.
Comparison of the levelized cost and thermoeconomic methodologies – Cost allocation in a solar polygeneration plant to produce power, desalted water, cooling and process heat
.
Energy Conversion and Management
168
,
215
229
(
2018
).
This content is only available via PDF.