This paper provides with a first assessment on the sustainability of Pressure Swing Adsorption (PSA) as a valid option for Carbon Dioxide (CO2) capture in power plant. PSA is a well-established gas separation technique in air separation, gas purification and CO2 capturing. The PSA system involved adsorption process which the adsorbent play an extremely important in gas separation. The adsorbent must be porous and preferably having a large surface area per unit mass. Activated Palm kernel activated carbon (APKS) has been used in this study for binary mixture gas separation involved Carbon dioxide and Hydrogen (CO2/H2), the characterization study reveals that the specific surface area of the prepared adsorbent is around 697.67m²/g with pore volume and pore size of 0.35m3/g and 2.01nm respectively. The average particle size of the adsorbent sample is recorded as 0.11µm. Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD) analysis uncovers the spongy structure of the highly amorphous ACPKS. Breakthrough studies at varying adsorption pressure were executed and 3 bar adsorption pressure is chosen for the subsequent optimization study. The PSA study which operated at the optimum operating condition yielded hydrogen purity of up to 99.978% with recovery of 80.014%.

1.
Y.
Park
,
Y.
Ju
,
D.
Park
and
C. H.
Lee
,
Adsorption equilibria and kinetic of six pure gases on pelletized zeolites 13 X upto 1.0 Mpa: CO2, CO, N2, CH4, Ar and H2
.
Chem. Eng. J
(
2016
),
348
365
.
2.
A. T.
Vu
,
Y.
Park
,
P. R.
Jeon
,
C. H.
Lee
,
Mesoporous MgO sorbent promoted with KNO3 for CO2 capture at intermediate temperatures
,
Chem. Eng. J.
258
(
2014
),
254
264
.
3.
D. P.
Álvarez
,
M.
Granda
,
C.
Blanco
,
R.
Santamaría
,
R.
Menéndez
,
CO2 adsorption capacity and kinetics in nitrogen-enriched activated carbonfibers prepared by different methods
,
Chem. Eng. J.
281
(
2015
),
704
712
.
4.
D
Bahamon
,
L.F.
Vega
,
Systematic evaluation of materials for post-combustion CO2 capture in a temperature swing adsorption process
,
Chem. Eng. J.
284
(
2016
),
438
447
.
5.
M.
Tong
,
Q
Yang
,
C.
Zhong
,
Computational screening of covalent organic frameworks for CH4/H2, CO2/H2 and CO2/CH4 separations
,
Microporous and Mesoporous Materials
210
(
2015
),
142
148
.
6.
J.
Andas
,
M. L. A
Rahman
, and
M. S. M.
,
Yahya
,
Preparation and Characterization of Activated Carbon from Palm Kernel Shell
.
IOP Conference Series: Materials Science and Engineering
,
226
(
1
) (
2017
),
12156
.
7.
N. S.
Nasri
,
U.D.
Hamza
,
S. N.
Ismail
,
M. M
Ahmed
, and
R.
Mohsin
,
Assessment of porous carbons derived from sustainable palm solid waste for carbon dioxide capture
.
Journal of Cleaner Production
71
, (
2014
),
148
157
.
8.
F.V.S.
Lopes
,
C.A. Grande, and A.E. Rodrigues, Activated carbon for hydrogen purification by pressure swing adsorption: Multicomponent breakthrough curves and PSA performance
.
Chemical Engineering Science
,
66
(
3
) (
2011
),
303
317
.
9.
A.R.
Hidayu
, and
N.
Muda
,
Preparation and Characterization of Impregnated Activated Carbon from Palm Kernel Shell and Coconut Shell for CO 2 Capture
,
Procedia Engineering.
148
(
2016
),
106
113
.
10.
K.Y.
Foo
and
B.H.
Hameed
,
Utilization of oil palm biodiesel solid residue as renewable sources for preparation of granular activated carbon by microwave induced KOH activation
,
Bioresource Technology
,
130
(
2013
),
696
702
.
11.
J.
Rouquerol
,
Recommendations for the characterization of porous solids
.
Pure & Applied Chemistry
,
66
(
8
), (
1994
),
1739
1758
.
12.
A.
Kundu
,
B. Sen Gupta, M.A. Hashim, and G., Redzwan, Taguchi optimization approach for production of activated carbon from phosphoric acid impregnated palm kernel shell by microwave heating
,
Journal of Cleaner Production
,
105
, (
2015
),
420
427
.
13.
E.
Calvo-Muñoz
,
F.
García-Mateos
,
J.
Rosas
,
J.
Rodríguez-Mirasol
, and
T.
,
Cordero
,
Biomass Waste Carbon Materials as adsorbents for CO2 Capture under Post − Combustion Conditions
.
Frontiers in Materials
,
3
, (
2016
)
14.
J.
Guo
, and
A.C.
Lua
,
Characterization of adsorbent prepared from oil-palm shell by CO2 activation for removal of gaseous pollutants
.
Materials Letters
,
55
(
5
), (
2002
),
334
339
.
15.
A.L.
Yaumi
,
M.Z.Z.A.
Bakar
, and
B.H.
Hameed
,
Recent advances in functionalized composite solid materials for carbon dioxide capture
.
Energy
,
124
, (
2017
),
461
480
.
16.
C.O.
Edmund
,
M.S.
Christopher
, and
D.K.
Pascal
,
Characterization of palm kernel shell for materials reinforcement and water treatment
.
Journal of Chemical Engineering and Materials Science
,
5
(
1
), (
2014
)
1
6
.
17.
T.
Yang
, and
A.C.
Lua
,
Textural and chemical properties of zinc chloride activated carbons prepared from pistachio-nut shells
.
Materials Chemistry and Physics
,
100
(
2–3
), (
2006
),
438
444
.
18.
C.
Pechyen
,
D.
Atong
,
D.
Aht-Ong
, and
V.
Sricharoenchaikul
,
Investigation of Pyrolyzed Chars from Physic Nut Waste for the Preparation of Activated Carbon
.
Journal of Solid Mechanics and Materials Engineering
,
1
(
4
), (
2007
),
498
507
.
19.
W.
Tongpoothorn
,
M.
Sriuttha
,
P.
Homchan
,
S.
Chanthai
, and
C.
Ruangviriyachai
,
Preparation of activated carbon derived from Jatropha curcas fruit shell by simple thermo-chemical activation and characterization of their physico− chemical properties
.
Chemical Engineering Research and Design
,
89
(
3
), (
2011
),
335
340
.
20.
U.
Holzwarth
, and
N.
Gibson
,
The Scherrer equation vers us th e “Deby e− Scherrer equation
.”
Nature Nanotechnology
,
6
(
9
), (
2011
),
534
.
21.
A.W.
Burton
,
K.
Ong
,
T.
Rea
, and
I.Y.
Chan
,.
On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems
.
Microporous and Mesoporous Materials
,
117
(
1–2
), (
2009
),
75
90
22.
G.A.
Zickler
,
B.
Smarsly
,
N.
Gierlinger
,
H.
Peterlik
, and
O. P
aris
,
A reconsideration of the relationship between the crystallite size laof carbons determined by X-ray diffraction and Raman spectroscopy
.
Carbon
,
44
(
15
), (
2006
),
3239
3246
.
23.
L.E.
Perez
,
Ethane Recovery from Residue Gas Using Pressure Swing Adsorption
(Master’s Thesis).
University of Alberta
,
Canada
(
2015
).
24.
A.
Abdeljaoued
,
F. Relvas, A. Mendes, and M. Hachemi, Simulation and experimental results of a PSA process for production of hydrogen used in fuel cells
.
Journal of Environmental Chemical Engineering
,
6
(
1
), (
2018
),
338
355
.
25.
F.V.S.
Lopes
,
C.A.
Grande
, and
A.E.
Rodrigues
,
Fast-cycling VPSA for hydrogen purification
.
Fuel
,
93
, (
2012
),
510
523
26.
S.
García
,
M.
Gil
,
C.
Martín
,
J.
Pis
,
F.
Rubiera
, and
C.
Pevida
,
Breakthrough adsorption study of a commercial activated carbon for pre − combustion CO2 capture
.
Chemical Engineering Journal
,
171
(
2
), (
2011
),
549
556
.
27.
Plaza
,
M.G.
,
Pevida
,
C.
,
Arenillas
,
A.
,
Rubiera
,
F.
and
Pis
,
J.J
,
2007
.
CO2 capture by adsorption with nitrogen enriched carbons
.
Fuel
,
86
(
14
),
2204
2212
.
28.
M.H.
Zarghampoor
,
M.
Mozaffarian
,
M.
Soleimani
, and
M.T.
Ravanchi
,
Modeling of CO2 Adsorption on Activated Carbon and 13X Zeolite via Vacuum Swing Adsorption
.
IOP Conference Series: Materials Science and Engineering
,
206
(
2017
).
29.
S.
Choi
,
J.H.
Drese
, and
C.W.
Jones
,
Adsorbent materials for carbon dioxide capture from large anthropogenic point sources
.
ChemSusChem
,
2
(
9
), (
2009
),
796
854
.
30.
V.
Finsy
,
L.
Ma
,
L.
Alaerts
,
D.
De Vos
,
G.
Baron
, and
J.
Denayer
,
Separation of CO2/CH4 mixtures with the MIL-53(Al) metal-organic framework
.
Microporous and Mesoporous Materials
,
120
(
3
), (
2009
),
221
227
.
31.
P.
Mendes
,
A.
Ribeiro
,
K.
Gleichmann
,
A.
Ferreira
, and
A.
Rodrigues
,
Separation of CO2/N2 on binderless 5A zeolite
.
Journal of CO2 Utilization
,
20
(
4
), (
2017
),
224
233
.
32.
A.D.
Wiheeb
,
Z.
Helwani
,
J.
Kim
, and
M.R.
Othman
,
Pressure Swing Adsorption Technologies for Carbon Dioxide Capture
.
Separation and Purification Reviews
,
45
(
2
), (
2016
),
108
121
.
33.
A.M.
Ribeiro
,
C.A.
Grande
,
F.V.
Lopes
,
J.M.
Loureiro
, and
A.E.
Rodrigues
,
A parametric study of layered bed PSA for hydrogen purification
.
Chemical Engineering Science
,
63
(
21
), (
2008
),
5258
5273
34.
Q.
Huang
, and
M.
Eić
,
Commercial ad sorbents as benchmark materials for separation of carbon dioxide and nitrogen by vacuum swing adsorption p rocess
.
Separation and Purification Technology
,
103
, (
2013
),
203
215
.
This content is only available via PDF.