As widely known, Anammox bacteria can easily undergo starvation due to fluctuation of feed in wastewater treatment plants which mostly were compromised due to the nature of the wastewater composition. Thus, three different types of starvation were studied namely, starvation with ammonium (Ra), with nitrite (Rn), and with hydrazine (Rh). The biomass for starvation test was obtained from an enriched Anammox reactor that has been stably running for 2 years where approximately 94% of nitrogen removal efficiency (NRE) was achieved before starvation. The amount of ammonium, nitrite and hydrazine added into the starvation reactors were 50 mg/l, 50 mg/L and 10 mg/L, respectively. Anammox bacteria in Rh showed better results during starvation compared to the other two. First of all, for decay rate after 15 days, the values obtained for Ra, Rn, and Rh were 0.032/day, 0.042/day and 0.019/day, respectively. In addition, the amount of Heme C extracted showed similar pattern when compared to the results of decay rate. The Heme C values obtained for Ra, Rn, and Rh after 15 days of starvation were 0.32 µg/L, 0.25 µg/L and 0.45 µg/L, respectively. This indicated that, availability of hydrazine helps to reduce the mortality rate of Anammox bacteria. To further enhance the finding, the amount of extra polymeric substances (EPS) available in the reactor during starvation was also studied. The PN/PS ratio obtained for Rn, Ra and Rh after 15 days were 7.35, 4.73 and 4.21, respectively. These values are higher compared to normal conditions which are around 0.8 1. This is because; none of the reactors could produce carbohydrates due to starvation process. PN/PS ratio results also show that addition of hydrazine helps reduce the adverse effects of starvation towards Anammox bacteria. Thus, addition of hydrazine reduces the adverse effects of starvation that Anammox bacteria are susceptible to.

1.
S.-Q.
Ni
,
N.
Sun
,
H.
Yang
,
J.
Zhang
and
H. H.
Ngo
,
Biochemical Engineering Journal
101
,
126
133
(
2015
).
2.
W. R.
Van der Star
,
W. R.
Abma
,
D.
Blommers
,
J.-W.
Mulder
,
T.
Tokutomi
,
M.
Strous
,
C.
Picioreanu
and
M. C.
van Loosdrecht
,
Water research
41
(
18
),
4149
4163
(
2007
).
3.
M.
Jetten
,
I.
Cirpus
,
B.
Kartal
,
L.
van Niftrik
,
K.
Van De Pas-Schoonen
,
O.
Sliekers
,
S.
Haaijer
,
W.
Van der Star
,
M.
Schmid
and
J.
van de Vossenberg
,
Biochemical Society Transactions
33
(
1
),
119
123
(
2005
).
4.
Y.
Gao
,
Z.
Liu
,
F.
Liu
and
K.
Furukawa
,
Biodegradation
23
(
3
),
363
372
(
2012
).
5.
M.
Strous
,
J. A.
Fuerst
,
E. H.
Kramer
,
S.
Logemann
,
G.
Muyzer
,
K. T.
van de Pas-Schoonen
,
R.
Webb
,
J. G.
Kuenen
and
M. S.
Jetten
,
Nature
400
(
6743
),
446
(
1999
).
6.
K.
Isaka
,
Y.
Date
,
T.
Sumino
,
S.
Yoshie
and
S.
Tsuneda
,
Applied microbiology and biotechnology
70
(
1
),
47
52
(
2006
).
7.
H.
Lu
,
J.
Keller
and
Z.
Yuan
,
Water research
41
(
20
),
4646
4656
(
2007
).
8.
G.
Yilmaz
,
R.
Lemaire
,
J.
Keller
and
Z.
Yuan
,
Water research
41
(
12
),
2590
2598
(
2007
).
9.
Y.-X.
Ji
and
R.-C.
Jin
,
Separation and Purification Technology
133
,
32
39
(
2014
).
10.
Q.
Wang
,
K.
Song
,
X.
Hao
,
J.
Wei
,
M.
Pijuan
,
M. C.
van Loosdrecht
and
H.
Zhao
,
Chemosphere
201
,
25
31
(
2018
).
11.
C. C.
Boutte
and
S.
Crosson
,
Trends in microbiology
21
(
4
),
174
180
(
2013
).
12.
S.-Q.
Ni
,
P.-H.
Lee
and
S.
Sung
,
Bioresource Technology
101
(
15
),
5767
5773
(
2010
).
13.
A.
Apha
,
Standard methods for the examination of water and wastewater
22
(
2012
).
14.
J. M.
Carvajal-Arroyo
,
W.
Sun
,
R.
Sierra-Alvarez
and
J. A.
Field
,
Chemosphere
91
(
1
),
22
27
(
2013
).
15.
E. A.
Berry
and
B. L.
Trumpower
,
Analytical biochemistry
161
(
1
),
1
15
(
1987
).
16.
J.
Chen
,
P.
Zheng
,
Y.
Yu
,
Q.
Mahmood
and
C.
Tang
,
Bioresource Technology
101
(
19
),
7293
7298
(
2010
).
17.
S.
Salem
,
M.
Moussa
and
M.
Van Loosdrecht
,
Biotechnology and bioengineering
94
(
2
),
252
262
(
2006
).
18.
D.
Scaglione
,
S.
Caffaz
,
E.
Bettazzi
and
C.
Lubello
,
Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology
84
(
8
),
1250
1254
(
2009
).
19.
S.-W.
Li
,
G.-P.
Sheng
,
Y.-Y.
Cheng
and
H.-Q.
Yu
,
Scientific reports
6
,
39098
(
2016
).
20.
L.
Miao
,
Q.
Zhang
,
S.
Wang
,
B.
Li
,
Z.
Wang
,
S.
Zhang
,
M.
Zhang
and
Y.
Peng
,
Bioresource Technology
249
,
108
116
(
2018
).
21.
B.
Kartal
and
J. T.
Keltjens
,
Trends in biochemical sciences
41
(
12
),
998
1011
(
2016
).
22.
M. S.
Jetten
,
L. v.
Niftrik
,
M.
Strous
,
B.
Kartal
,
J. T.
Keltjens
and
H. J.
Op den Camp
,
Critical reviews in biochemistry and molecular biology
44
(
2-3
),
65
84
(
2009
).
23.
B.
Kartal
,
M. M.
Kuypers
,
G.
Lavik
,
J.
Schalk
,
H. J.
Op den Camp
,
M. S.
Jetten
and
M.
Strous
,
Environmental microbiology
9
(
3
),
635
642
(
2007
).
24.
M.
Pocquet
,
Z.
Wu
,
I.
Queinnec
and
M.
Spérandio
,
Water research
88
,
948
959
(
2016
).
25.
L.
Knobeloch
,
B.
Salna
,
A.
Hogan
,
J.
Postle
and
H.
Anderson
,
Environmental health perspectives
108
(
7
),
675
(
2000
).
26.
B.-S.
Xing
,
Q.
Guo
,
X.-Y.
Jiang
,
Q.-Q.
Chen
,
M.-M.
He
,
L.-M.
Wu
and
R.-C.
Jin
,
Chemical Engineering Journal
287
,
575
584
(
2016
).
27.
X.
Hao
,
Q.
Wang
,
X.
Zhang
,
Y.
Cao
and
C. van Mark
Loosdrecht
,
Water research
43
(
14
),
3604
3612
(
2009
).
28.
M. S.
Jetten
,
M.
Strous
,
K. T.
Van de Pas-Schoonen
,
J.
Schalk
,
U. G.
van Dongen
,
A. A.
van de Graaf
,
S.
Logemann
,
G.
Muyzer
,
M. C.
van Loosdrecht
and
J. G.
Kuenen
,
FEMS microbiology reviews
22
(
5
),
421
437
(
1998
).
29.
X.
Ma
,
Y.
Wang
,
S.
Zhou
,
Y.
Yan
,
X.
Lin
and
M.
Wu
,
Chemical Engineering Journal
313
,
1233
1241
(
2017
).
30.
J.
Schmidt
and
B. K.
Ahring
,
Applied microbiology and biotechnology
42
(
2-3
),
457
462
(
1994
).
31.
J.
Guo
,
S.
Wang
,
J.
Lian
,
H. H.
Ngo
,
W.
Guo
,
Y.
Liu
and
Y.
Song
,
Bioresource Technology
220
,
641
646
(
2016
).
32.
H.-C.
Flemming
and
J.
Wingender
,
Nature Reviews Microbiology
8
(
9
),
623
(
2010
).
33.
B.
Kartal
,
L.
van Niftrik
,
J. T.
Keltjens
,
H. J.
Op den Camp
and
M. S.
Jetten
,
Advances in microbial physiology
60
,
212
(
2012
).
This content is only available via PDF.