Ionic liquids have attracted many researches in bioactive compound separation as well as carbon capture. This is due to the ability of ionic liquid to be designed based on specific needs and produced higher quantity and quality of extract product. A study showed that ionic liquid can extract a higher number of phytochemicals compared to conventional solvents and produce better yield with microwave-assisted extraction. Due to vast possible structures of ionic liquid and wide range of phytochemicals existed, a systematic approach was developed to screen ionic liquid solvents for phytochemical extraction. This study is a part of experimental validation included in the systematic approach. The main focus of this study is to optimize the process of ionic liquid-based microwave-assisted extraction of flavonoid and phenolic acid from Labisia pumila. A two-level, four-factor of central composite design (CCD) was employed to determine the effect of the process factors towards yield of flavonoid and phenolic acid extracted from the herb. The process factors are the temperature (Celsius), extraction time (min), power (W) and type of ionic liquid (based on their dielectric point). In this study, ionic liquid was back-extracted using organic solvents for regeneration and recycle of extraction solvent, based on Bogdanov (2015). The extracted samples were analyzed by determining the yield of flavonoid and phenolic acid through linear equation of quercetin and gallic acid. In this study, it can be observed that the recovery of flavonoid and phenolic acid from L. pumila using ionic liquid-based microwave-assisted extraction was about 30 – 50 percent higher compared to conventional solvent. Therefore, the study indicated that ionic liquid-based microwave-assisted extraction was an efficient and rapid method for L. pumila phytochemical extraction.

1.
A. H.
Hussin
,
Malaysian Journal of Pharmacy
1
(
2
),
39
44
(
2001
).
2.
A.
Alsarhan
,
N.
Sultana
,
A.
Al-Khatib
and
M.
Kadir
,
J. Basic Appl. Sci.
10
,
149
159
(
2004
).
3.
L.
Hoareau
and
E. J.
DaSilva
,
EJB Electron. J. Biotechnol.
2
(
2016
).
4.
R.
Croteau
,
T.M.
Kutchan
and
N. G.
Lewis
,
Biochem. Mol. Biol. Plants
7
,
1250
1318
(
2000
).
5.
A.
Bernhoft
, in a
Br. Rev. Bioact. Compd. Plants
edited by
A.
Bernhoft
(
The Norwegian Academy of Science and Letters
,
Norway
,
2010
), p.
11
17
.
6.
D.
Krishnaiah
,
R.
Sarbatly
and
R.
Nithyanandam
,
Food Bioprod. Process.
89
,
217
233
(
2011
).
7.
H. Z.E.
Jaafar
,
M. H.
Ibrahim
and
E.
Karimi
,
Molecules
17
,
6331
6347
(
2012
).
8.
B.C.
Stones
,
Nat. J.
42
:
43
51
(
1988
).
10.
A. J.
Jamia
,
P. J.
Houghton
,
S. R.
Milligan
and
J.
Ibrahim
,
Sains Kesihatan
1
,
53
60
(
2003
).
11.
S.
Sasidharan
,
Y.
Chen
,
D.
Saravanan
,
K. M.
Sundram
and
L. Yoga
Latha
,
African J. Tradit. Complement. Altern. Med.
8
,
1
10
(
2011
).
12.
Y.
Hernandez
,
M.
Lobo
and
M.
Gonzalez
,
Food Chem.
114
,
734
741
(
2009
).
13.
J. D.
Holbrey
and
K. R.
Seddon
,
Clean Technol. Environ. Policy.
1
,
223
236
(
1999
).
14.
W.
Xu
,
K.
Chu
,
H.
Li
,
Y.
Zhang
,
H.
Zheng
,
R.
Chen
and
L.
Chen
,
Molecules
,
2012
.
15.
M.
Harini
,
S.
Jain
,
J.
Adhikari
,
S. B.
Noronha
and
R. K.
Yamuna
,
Sep. Purif. Technol.
155
,
45
57
(
2014
).
16.
F. K.
Chong
,
D. C. Y.
Foo
,
F. T.
Eljack
,
M.
Atilhan
and
N. G.
Chemmangattuvalappil
,
Clean Technol. Environ. Policy.
17
,
1301
1312
(
2015
).
17.
L.
Yang
,
X.
Sun
,
F.
Yang
,
C.
Zhao
,
L.
Zhang
and
Y.
Zu
,
Int. J. Mol. Sci.
13
,
5163
5178
(
2012
).
18.
L. M.
Chávez-Islas
,
R.
Vasquez-Medrano
R. and
A.
Flores-Tlacuahuac
,
Ind. Eng. Chem. Res.
50
,
5153
5168
(
2011
).
19.
J. F.
Brennecke
and
E. J.
Maginn
,
AIChE Journal
47
(
11
),
2384
2389
(
2001
).
20.
N. R. H. A.
Rahman
,
N. A.
Yunus
and
A. A.
Mustaffa
,
Chemical Engineering Transactions
56
,
1075
1080
(
2017
).
21.
M. G.
Bogdanov
,
R.
Keremedchieva
and
I.
Svinyarov
,
Sep. Purif. Technol.
155
,
13
19
(
2015
).
22.
N.
Babbar
,
H. S.
Oberoi
,
S. K.
Sandhu
and
V. K.
Bhargav
,
Journal of food science and technology
51
(
10
),
25682575
(
2001
).
23.
C.
Chang
,
M.
Yang
,
H.
Wen
and
J.
Chern
,
J. Food Drug Analaysis
10
,
178
182
(
2002
).
24.
N.
Ozsoy
,
A.
Can
,
R.
Yanardag
and
N.
Akev
,
Food Chemistry
110
,
571
583
(
2008
).
25.
W.
Xu
,
K.
Chu
,
H.
Li
,
Y.
Zhang
,
H.
Zheng
,
R.
Chen
and
L.
Chen
,
Molecules
17
(
12
),
14323
35
(
2012
).
26.
E. M
ller
,
R.
Berger
,
E.
Blass
,
D.
Sluyts
and
A.
Pfennig
,
Ullmann’s Encyclopedia of Industrial Chemistry
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
2000
).
27.
R. I.
Canales
and
J. F.
Brennecke
,
J. Chem. Eng. Data
61
(
5
),
1685
1699
(
2016
).
28.
C. E.
Ekpenyong
,
E. E.
Akpan
and
N. E.
Daniel
,
Journal of Pharmacognosy and Phytochemistry
3
(
1
),
133
141
(
2014
).
This content is only available via PDF.