This paper highlights the comparison of acoustical properties of seashell and natural fiber based reinforced polymer (SRP and NRP). Based on previous studies, the best seashell for acoustics is Placuna placenta Linn, the best natural fiber is coconut fiber and an additional water hyacinth fiber as comparative material. The seashell, coco-husk and water hyacinth fiber were ground and of 0.2 mm diameter was filtered then composted with polyester and methyl ethyl ketone peroxide. The composition of polyester, fiber and catalyst is 200 ml, 25 grams, and 20 ml respectively. Square trays were used to form flat FRP panels which were dried with normal air temperatures. The ASTM E-1050-98 on B&K 4206 standard was implemented on observation connected to B&K Pulse LAN-XI. Meanwhile, a statistical comparative method was used to analyze the results. It identified that the average absorption coefficient of SFRP (PP30) is relatively higher than others at 0.2035 based on the comparative statistics, while the Sound Transmission Loss of the SFRP of WH15 is the highest of all samples (58.3594 dB). This research is beneficial for the innovation of acoustic material for interior design and architecture.

1.
E.
Setyowati
,
A.
Satyapratama
,
S. T.
Atmadja
, and
G.
Hardiman
, “
Manufacture of Acoustical One Side-Waffle Panel Made of Natural Resources with Hydraulic Hot Press Machine
,”
J. Teknol.
, vol.
78
, no.
5
, pp.
289
293
,
2014
.
2.
E.
Setyowati
and
E. E.
Pandelaki
, “
The concept of sustainable prefab modular housing made of natural fiber reinforced polymer (NFRP)
,”
IOP Conf. Ser. Mater. Sci. Eng.
, Vol.
316
, no.
1
,
2018
.
3.
E.
Setyowati
,
I.
Yahya
,
E.
Supriyo
,
I. C.
Romadhona
, and
A.
Minardi
, “
On the sound absorption improvement of water hyacinth and coconut husk based fiber reinforced polymer panel
,”
MATEC Web Conf.
, Vol.
159
,
2018
.
4.
F. C.
Lee
and
W. H.
Chen
, “
Acoustic Transmission Analysis of Multi-Layer Absorbers
,”
J. Sound Vib.
, vol.
248
, no.
4
, pp.
621
634
,
2001
.
5.
T.
Bravo
,
C.
Maury
, and
C.
Pinhède
, “
Absorption and transmission of boundary layer noise through flexible multi-layer micro-perforated structures
,”
J. Sound Vib.
, vol.
395
, pp.
201
223
,
2017
.
6.
Y.
Takahashi
,
T.
Otsuru
, and
R.
Tomiku
, “
In situ measurements of surface impedance and absorption coefficients of porous materials using two microphones and ambient noise
,”
Appl. Acoust.
, vol.
66
, no.
7
, pp.
845
865
,
2005
.
7.
A. A.
Odusanya
,
B.
Bolasodun
, and
C. I.
Madueke
, “
Property Evaluation of Sea shell Filler Reinforced Unsaturated Polyester Composite
,”
Int. J. Sci. Eng. Res.
, vol.
5
, no.
11
, pp.
1343
1349
,
2014
.
8.
V.
Fombuena
,
L.
Bernardi
,
O.
Fenollar
,
T.
Boronat
, and
R.
Balart
, “
Characterization of green composites from biobased epoxy matrices and bio-fillers derived from seashell wastes
,”
J. Mater.
, Vol.
57
, pp.
168
174
,
2014
.
9.
L. B.
Teixeira
,
V. K.
Fernandes
,
B. G. O.
Maia
,
S.
Arcaro
, and
A. P. N.
de Oliveira
, “
Vitrocrystalline foams produced from glass and oyster shell wastes
,”
Ceram. Int.
, vol.
43
, no.
9
, pp.
6730
6737
,
2017
.
10.
L.
Li
,
Z.
Zeng
,
Z.
Wang
,
Z.
Peng
,
X.
She
, and
S.
Li
, “
Effect of Oyster Shell Powder Loading on the Mechanical and Thermal Properties of Natural Rubber / Oyster Shell Composites,”
vol.
25
, no.
1
, pp.
17
22
,
2017
.
11.
S.
Sengupta
,
G.
Basu
, and
A. F.
Technology
, “
Properties of Coconut Fiber
,” no.
2015
,
2017
.
12.
S.
Indrawati
, “
Innovative Coco Shell Resonator (CSR) Panels for Acoustic Performance
,”
Procedia Eng.
, vol.
170
, pp.
293
298
,
2017
.
13.
M. H.
Fouladi
,
M.
Jailani
, and
M.
Nor
, “
Analysis of coir fiber acoustical characteristics
,”
Appl. Acoust.
, vol.
72
, no.
1
, pp.
35
42
,
2011
.
14.
R.
Zulkifli
,
M. J. M.
Nor
,
M. F. M.
Tahir
,
A. R.
Ismail
, and
M. z.
Nuawi
, “
acoustic properties of multi layer coir fibre sound absorption panel.pdf
,”
J. Appl. Sci.
, Vol.
20
, pp.
3709
3714
,
2008
.
15.
C. H.
Huang
,
J. H.
Lin
,
C. W.
Lou
, and
Y. T.
Tsai
, “
The efficacy of coconut fibers on the sound-absorbing and thermal-insulating nonwoven composite board
,”
Fibers Polym.
, vol.
14
, no.
8
, pp.
1378
1385
,
2013
.
16.
U.
Berardi
and
G.
Iannace
, “
Acoustic characterization of natural fibers for sound absorption applications
,”
Build. Environ.
,
2015
.
17.
M. E.
Delaney
and
E.N.
Bazley
, “
Acoustical properties o f fibrous absorbent materials
,” no.
3
,
1969
.
18.
D. H.
Mueller
and
A.
Krobjilowski
, “
New Discovery in the Properties of Composites Reinforced with Natural Fibers
,”
J. Ind. Text.
, vol.
33
, pp.
111
130
,
2003
.
19.
A. E. 1050-98
,
ASTM E 1050-98, Standard test method for Impedance and absorption of acoustical materials using tube two microphones and digital frequency analysis system
.
1998
.
20.
A. E. 2611-09
,
ASTM E 2611-09 Standard Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method
.
2009
.
21.
K.
Attenborough
, “
Acoustical characteristics of Porous Materials
,” in
Acoustical characteristics ofporous materials
,
1982
, pp.
1
49
.
22.
C.
Wang
and
J.
Torng
, “
Experimental study of the absorption characteristics of some porous ® brous materials,”
vol.
62
, pp.
447
459
,
2001
.
23.
N. A.
Latif
,
A. Z. M.
Rus
, and
M. K. A. G.
Zaimy
, “
Effect of Thickness for Sound Absorption of High Density Biopolymer Foams,”
vol.
595
, pp.
183
187
,
2014
.
24.
A.
Nandanwar
,
M. C.
Kiran
, and
K. C.
Varadarajulu
, “
Influence of Density on Sound Absorption Coefficient of Fibre Board
,”
Open J. Acoust.
, vol.
7
, pp.
1
9
,
2017
.
25.
Y. H.
Ko
 et al., “
Investigation on the sound absorption and transmission for aluminum foam and its composite,”
vol.
126
, pp.
1825
1828
,
2007
.
26.
C. Scientific
and
N.
Ryde
, “
Effect of Fiberglass Density and Flow Resistance on Sound Transmission Loss of Cavity Plasterboard Walls*
,” pp.
215
220
,
1993
.
This content is only available via PDF.