This study develops a method for structural and parametric optimization of combined ballistic launchers for the selected criterion with restrictions. Mathematical modeling of intrachamber processes is carried out in the framework of a unified approach based on quasi-one-dimensional continual media equations. Three types of media are considered: gunpowder, deformable piston, and gas. For structural and parametric optimization, a genetic algorithm is used. Crossover and mutation operators have been developed for the structure and parametric optimization of combined ballistic launchers as a class of objects. Operating with a variable set of parameters is the feature of the algorithm. A parallel implementation of the genetic algorithm with the rejection of “generations” was used. A model problem was calculated as an example of the developed algorithm operation. As a result, one can observe the evolution of the ballistic launcher structure by the rate of muzzle velocity.

1.
Hypervelocity Launchers
, edited by
F.
Seiler
and
O.
Igra
(
Springer
,
2016
).
2.
N. A.
Zlatin
,
A. P.
Krasilshchikov
,
G. I.
Mishin
and
N. N.
Popov
,
Ballistic installations and their application in experimental studies
(
Nauka, Moscow
,
1974
) (in Russian).
3.
Y. F.
Khristenko
,
S. A.
Zelepugin
and
A. V.
Gerasimov
,
ARPN Journal of Engineering and Applied Sciences.
Vol.
12
, No.
22
,
6606
6610
(
2017
).
4.
A.
Moradi
and
H.
Ahmadikia
,
Adv. Theor. Appl. Mech.
, Vol.
4
, No.
3
,
101
111
(
2011
).
5.
C.
Cheng
and
X.
Zhang
,
Int. J. of Numerical Methods for Heat & Fluid Flow
23
(
8
),
1277
1290
(
2013
).
6.
H.
El Sadek
,
X.
Zhang
and
M.
Rashad
,
WSEAS Transactions on Applied and Theoretical Mechanics
9
,
80
87
(
2014
).
7.
N. V.
Bykov
,
Journal of Physics: Conference Series
572
,
012055
(
2014
).
8.
Wetz
D.
,
McNab
I.
,
Stefani
F.
,
Parker
J.
//
Acta Physica Polonica A.
115
(
6
),
1066
1068
(
2009
)
9.
High-Velocity Impact Phenomena
, edited by
R.
Kingslow
(
Academic Press
,
New York
,
1970
).
10.
R.
Putzar
and
F.
Schaefer
,
International Journal of Impact Engineering
88
,
118
124
(
2016
).
11.
Z.
Shi-Cao
,
S.
Zhen-Fei
and
Z.
Xiao-Ping
,
Proc. Engineering
58
,
98
109
(
2013
).
12.
V. Z.
Kasimov
,
O. V.
Ushakova
and
Yu. P.
Khomenko
,
J. of Appl. Mech. and Tech. Phys.
44
(
5
)
612
619
(
2003
).
13.
N. V.
Bykov
and
E. A.
Nesterenko
,
Scientific Visualization
,
7
(
1
),
65
77
(
2015
).
14.
Y.
Wada Y
,
NASA Techn. Memorandum
106452
; AIAA-94-0083 (
1994
).
15.
P. E.
Gill
and
W.
Murray
,
SIAM Review
, Vol.
47
, No.
1
,
99
131
(
2005
).
16.
A.
Konak
,
D. W.
Coi
and
A. E.
Smith
,
Reliab. Eng. Syst. Saf.
,
91
(
9
),
992
1007
(
2006
).
17.
Practical Handbook of Genetic Algorithms
, edited by
L. D.
Chambers
(
CRC Press
,
Boca Raton FL
,
1995
).
18.
M. C.
Wu
,
Lin
C. S.
,
C. H.
Lin
,
C. F.
Chen
,
Computers and Operations Research
80
,
101
112
(
2017
).
19.
Z.
Qiongbing
,
D.
Lixin
,
Expert Sys. Appl.
,
60
,
183
189
(
2016
).
20.
L.
Zhang
and
T. N.
Wong
,
Eur. J. Oper. Res.
244
(
2
),
434
444
(
2015
).
21.
M.
Chanthasuwannasin
,
B.
Kottititum
and
T.
Srinophakun
,
Chem. Eng. Commun.
204
(
8
),
840
851
(
2017
).
22.
Z.
Wang
,
L.
Zhao
,
N.
Cao
,
Jilin Daxue Xuebao (Gongxueban)
47
(
3
),
751
755
(
2017
).
23.
F.
Herrera
,
M.
Lozano
and
J. L.
Verdegay
,
Artificial Intelligence Review
12
(
4
),
265
319
(
1998
).
24.
L.J.
Eshelman
and
J.D.
Schaffer
,
Foundations of Genetic Algorithms
2
,
187
202
(
1993
).
This content is only available via PDF.