Resonant acoustic nonlinearity and loss in additively manufactured stainless steel were measured with the aim of assessing the potential of such measurements for nondestructively sensing defects that degrade mechanical performance. The material was fabricated by laser powder bed fusion (L-PBF) with intentional differences in spacing between laser tracks, which produced differences in porosity and amount of incompletely melted powder. The composition of the material was that of nominal 17-4 stainless steel. X-ray computed tomography was employed to image the structure of pores, including incompletely melted parti-cles. Porosities were determined to be in the range of approximately 0.05 % to 11.9 %, and unmelted powder fractions were in the range of approximately 0 % to 2.3 %. Noncontacting electromagnetic-acoustic transduction was employed to excite the lowest-order cutoff torsional mode in cylindrical specimens. Resonant frequencies as a function of RF amplitude were determined through time-domain analysis of decaying waveforms following tone-burst excitation, and acoustic loss was determined from an exponential fit of amplitude vs. time. Resonant frequencies were found to decrease with time during ringdown, corresponding to an unusual positive dependence on vibrational amplitude. Amplitude-dependent frequency shifts and acoustic loss increased between specimens monotonically with porosity and unmelted powder fraction.

1.
I.
Gibson
,
D. W.
Rosen
, and
Brent
Stucker
,
Additive Manufacturing Technologies: 3D Printing, Rapid Proto-typing, and Direct Digital Manufacturing
(
Springer
,
New York
,
2015
).
2.
Measurement Science Roadmap for Metal-Based Additive Manufacturing
, prepared by
Energetics Inc.
,
Columbia, MD, for NIST
(
2013
), p.
19
.
3.
M.
Seifi
,
M.
Gorelik
,
J.
Waller
,
N.
Hrabe
,
N.
Shamsaei
,
S.
Daniewicz
,
J. J.
Lewandowski
,
JOM
,
69
, pp.
439
455
(
2017
).
4.
J. P.
Kruth
,
M.
Bartscher
,
S.
Carmignato
,
R.
Schmitt
,
L.
De Chiffre
,
A.
Weckenmann
, “
Computed tomography for dimensional metrology
,”
CIRP Annals
,
60
, pp.
821
842
(
2011
).
5.
L.
De Chiffre
,
S.
Carmignato
,
J. P.
Kruth
,
R.
Schmitt
,
A.
Weckenmann
, “
Industrial applications of computed tomography
,”
CIRP Annals
,
63
, pp.
655
677
(
2014
).
6.
F. H.
Kim
,
S. P.
Moylan
,
E. J.
Garboczi
,
J. A.
Slotwinski
, “
Investigation of pore structure in cobalt chrome additively manufactured parts using X-ray computed tomography and three-dimensional image analysis
,”
Ad-ditive Manufacturing
,
17
, pp.
23
38
(
2017
).
7.
W. L.
Johnson
,
B. A.
Auld
, and
G. A.
Alers
, “
Spectroscopy of resonant torsional modes in cylindrical rods using electromagnetic-acoustic transduction
,”
J. Acoust. Soc. Am.
,
95
, pp.
1413
1418
(
1994
).
8.
S. V.
Eringen
and
E. S.
Şuhubi
,
Elastodynamics
(
Academic
,
New York
,
1975
), Vol.
11
.
9.
W. L.
Johnson
,
S. A.
Kim
,
G. S.
White
,
J.
Herzberger
,
K. L.
Peterson
, and
P. R.
Heyliger
, “
Time-domain analysis of resonant acoustic nonlinearity arising from cracks in multilayer ceramic capacitors
,”
AIP Conference Proceedings
1706
,
060005
, (
2016
).
10.
E.
Rubiola
,
Phase Noise and Frequency Stability in Oscillators
(
Cambridge University Press
,
Cambridge
,
2009
), p.
6
.
11.
K. E.-A.
Van Den Abeele
,
A.
Sutin
,
J.
Carmeliet
, and
P. A.
Johnson
, “
Micro-damage diagnostics using nonlinaer elastic wave spectroscopy
,”
NDT&E Int.
,
34
, pp.
239
248
(
2001
).
12.
S.
Haupert
,
F.
Renaud
,
J.
Rivière
,
M.
Talmant
,
P. A.
Johnson
, and
P.
Laugier
, “
High-accuracy acoustic detection of nonclassical component of material nonlinearity
,”
J. Acoust. Soc. Am.
,
130
, pp.
2654
2661
(
2011
).
13.
T.
Ohtani
,
Y.
Kusanagi
, and
Y.
Ishii
, “
Noncontact nonlinear resonant ultrasound spectroscopy to evaluate creep damage in an austenitic stainless steel
,”
AIP Conference Proceedings
1511
, pp.
1227
1233
(
2013
).
14.
H.
Zhang
,
J. A.
Kosinski
,
Y.
Xie
, and
J. A.
Turner
, “
Drive-Level Dependence of Doubly Rotated Langasite Resonators With Different Configurations
,”
IEEE Trans. Ultrason. Ferro. Freq. Ctrl.
,
60
, pp.
963
969
(
2013
).
15.
S. K.
Chakrapani
and
D. J.
Barnard
, “
Determination of acoustic nonlinearity parameter (β) using nonlinear resonance ultrasound spectroscopy: Theory and experiment
,”
J. Acoust. Soc. Am.
,
114
, pp.
919
928
(
2017
).
16.
V. E.
Nazarov
and
A. B.
Kolpakov
, “
Experimental investigations of nonlinear acoustic phenomena in poly-crystalline zinc
,”
J. Acoust. Soc. Am.
,
107
, pp.
1915
1921
(
2000
).
17.
K.
Winkler
,
A.
Nur
, and
M.
Gladwin
, “
Friction and seismic attenuation in rocks
,”
Nature
,
277
, pp.
528
531
(
1979
).
18.
D.
Pasqualini
,
K.
Heitmann
,
J.A.
TenCate
,
S.
Habib
,
D.
Higdon
, and
P. A.
Johnson
, “
Nonequilibrium and nonlinear dynamics in Berea and Fontainebleau sandstones: Low-strain regime
,”
J. Geophys. Res.
,
112
,
B01204
(
2007
).
19.
Z.
Chen
and
J.
Qu
, “
Dislocation-induced acoustic nonlinearity parameter in crystalline solids
,”
J. Appl. Phys.
,
114
,
164906
(
2013
).
20.
D. N.
Boccaccini
and
A. R.
Boccaccini
, “
Dependence of Ultrasonic Velocity on Porosity and Pore Shape in Sintered Materials
,”
J. Nondestruct. Eval.
,
16
, pp.
187
192
(
1997
).
21.
S.
Ekinci
, “
Characterisation of sintered metal products by using ultrasonics
,”
Insight
,
47
, pp.
674
677
(
2005
).
22.
J. A.
Slotwinski
,
E. J.
Garboczi
, and
K. M.
Hebenstreit
, “
Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control
,”
J. Res. Natl. Inst. Stan.
,
119
, pp.
494
548
(
2014
).
23.
A. S.
Nowick
and
B. S.
Berry
,
Anelastic Relaxation in Crystalline Solids
(
Academic
,
1972
).
24.
W. L.
Johnson
,
S. A.
Kim
,
G. S.
White
, and
J.
Herzberger
, “
Nonlinear resonant acoustic detection of cracks in multilayer ceramic capacitors
,”
2014 IEEE Ultrason. Symp. Proceedings
(
Chicago
, Sept. 3–6, 2014), pp.
248
251
(
2014
).
This content is only available via PDF.