Nuclear industry needs effective recovering of fissile material from used nuclear fuel, as uranium accounting more than 90% of the spent nuclear fuel (SNF) volume. Use of reprocessed uranium (RepU) is associated with the difficulties due to the presence of 232,234,236U isotopes in its composition. The content of these isotopes in fresh fuel is limited in accordance with specifications for low-enriched uranium (LEU). In this regard, in order to make a product of the required quality, it is necessary to modify the regular cascade scheme for enriching natural uranium and/or partially dilute the RepU with raw materials not containing 232,234,236U (for example, natural uranium or depleted uranium). To solve such problems, a number of cascade schemes have been proposed for the last decades. However, there is still no answer what kind of scheme is preferable. In addition, most of them are unsuitable for full reuse of uranium extracted from spent fuel. Within the framework of the present paper, a double cascade scheme is proposed that allows a full use of reprocessed uranium (of any composition, including “dirty” one) in fuel production in compliance with restrictions on even-numbered isotopes. The “quasi-ideal” cascade, widely used in modeling separation processes in cascades for the separation of multicomponent mixtures, was chosen as the object of this theoretical study. The physical regularities of mass transfer in the proposed cascade scheme are analyzed. The interdependencies of cascade parameters are studied. It is shown that this scheme can be effectively employed to enrich the RepU of “dirty” composition, which are typical for SNF after several irradiation cycles.

1.
A.A.
Orlov
,
A.V.
Kravchenko
,
E.S.
Titov
and
A.Ya.
Lebedev
,
News of High. Edu. Inst. Phys.
58
,
2/2
,
35
40
(
2015
) (in Russian).
2.
E. A.
Andrianova
,
V. D.
Davidenko
and
V. F.
Tsibulsky
,
Nuclear Energy
,
118
,
5
,
243
247
(
2015
) (in Russian).
3.
M.A.
Rana
,
NST
,
20
,
3
,
188
192
(
2009
).
4.
M.A.
Rana
,
WJNST
,
2
,
3
,
89
105
(
2012
).
5.
A.Yu.
Smirnov
,
G.A.
Sulaberidze
,
V.E.
Gusev
,
A.A.
Dudnikov
,
V.A.
Nevinitsa
,
V.Yu.
Blandinsky
,
P.
Fomichenko
and
E.A.
Andrianova
,
JPCS
,
1099
(
1
),
012001
(
2018
).
6.
K.
Hida
,
S.
Kusuno
and
T.
Seino
,
Nuc. Technol.
75
,
148
159
(
1986
).
7.
J.R.
Coleman
and
T.W.
Knight
,
Nucl. Eng. Des.
240
,
1028
1032
(
2010
).
8.
A.I.
Kislov
,
A.A.
Titov
,
A.M.
Dmitriev
and
A.E.
Sintsov
,
Nuc. Rad. Saf.
52
59
(
2012
) (in Russian).
9.
V.N.
Prusakov
,
A.A.
Sazykin
and
L.Yu.
Sosnin
,
Atom. Energy+
105
,
3
,
150
156
(
2008
).
10.
V.A.
Palkin
and
E.V.
Maslyukov
, In:
SPLG-2017 Proc
. (
Joint Research Centre, EU Science Hub
,
Ispra
,
2018
) pp.
43
47
.
11.
V.A.
Palkin
,
Atom. Energy+
,
115
,
1
,
32
37
(
2013
).
12.
G.A.
Sulaberidze
,
V.D.
Borisevich
and
Q.X.
Xie
,
Theor. Found. Chem. Eng.
,
40
,
1
,
5
13
(
2006
).
13.
V.A.
Palkin
,
Prospective Materials
,
8
,
11
14
(
2010
) (in Russian).
14.
A.Yu.
Smirnov
and
G.A.
Sulaberidze
,
Atom. Energy+
117
,
1
,
44
51
(
2014
).
15.
V.A.
Palkin
,
Atom. Energy+
118
,
3
,
191
195
(
2015
).
16.
V.A.
Palkin
,
Atom. Energy+
121
,
3
,
197
202
(
2016
).
17.
V.A.
Palkin
and
E.V.
Maslyukov
,
Theor. Found. Chem. Eng.
50
,
5
,
711
717
(
2016
).
18.
V.A.
Palkin
,
Atomic Energy
,
121
,
1
,
43
48
(
2016
).
19.
A.Yu.
Smirnov
,
V.E.
Gusev
,
G.A.
Sulaberidze
,
V.A.
Nevinitsa
and
P.A.
Fomichenko
,
Bul. Nation. Res. Nuc. Univ. MEPhI
,
7
,
6
,
449
457
(
2018
) (in Russian).
20.
V.A.
Palkin
,
A.Yu.
Smirnov
and
G.A.
Sulaberidze
, In:
SPLG-2010 Proc.
(
Beresta
,
Saint-Petersburg
,
2010
) pp.
142
149
.
21.
G.A.
Sulaberidze
,
V.D.
Borisevich
and
Ce
Tsyuansin
, in
Physicochemical Processes in the Selection of Atoms and Molecules
(
Tsniiatominform, Zvenigorod
,
2004
) pp.
78
85
(in Russian).
22.
V.A.
Zhurin
,
V.V.
Vodolazskih
,
V.I.
Shchelkanov
,
V.A.
Palkin
,
N.P.
Glukhov
and
A.V.
Fomin
, RF Patent 2399971, Byulleten’ "Izobreteniya. Poleznye modeli,
26
,
659
(
2010
) (in Russian).
23.
V.V.
Vodolazskikh
,
V.A.
Kozlov
,
V.I.
Mazin
,
M.I.
Sterkhov
,
V.V.
Shidlovsky
and
V.I.
Schelkanov
, RF Patent 2282904, Byulleten’ "Izobreteniya. Poleznye modeli,
24
,
549
550
(
2006
) (in Russian).
24.
A.A.
Orlov
,
A.F.
Tsimbalyuk
and
R.V.
Malyugin
,
Sep. Purif. Rev.
1
,
46
,
81
89
(
2017
).
25.
A.A.
Orlov
and
R.V.
Malyugin
,
Adv. Mater. Res.
1084
,
338
341
(
2015
).
26.
A.A.
Orlov
,
A.F.
Tsimbalyuk
and
R.V.
Malyugin
,
Bul. Nation. Res. Nuc. Univ. MEPhI
,
5
,
6
,
558
563
(
2016
). (in Russian)
27.
A.A.
Orlov
,
A.F.
Tsimbalyuk
and
R.V.
Malyugin
,
MATEC Web of Conferences
,
72
:
01079
(
2016
).
28.
G.A.
Sulaberidze
and
V.D.
Borisevich
,
Sep. Sci. Technol
,
36
,
8–9
,
1769
1817
(
2001
).
29.
A. De la
Garza
,
G.A.
Garrett
and
J.E.
Murphy
,
Chem. Eng. Sci.
,
15
,
188
209
(
1961
).
30.
G.
Del Cul
,
L.
Trowbridge
,
J.
Renier
,
R.
Ellis
,
K.
Williams
,
B.
Spencer
and
E.
Collins
,
ORNL/TM- 2007/207, Oak Ridge National Laboratory
(
2009
).
31.
E.
Schneider
,
M.
Deinert
and
A.
Scopatz
, in
GLOBAL 2007: Advanced Nuclear Fuel Cycles and Systems
(
Curran Associates, Inc
,
NY
,
2007
) pp.
1549
1554
.
This content is only available via PDF.