In this paper, a hypothesis that the cosmological gravitational potential can be measured with the use of high- precision atomic clocks is proposed and substantiated. The consideration is made with the use of a quasi-classical description of the gravitational shift that lies in the frame of nonmetric theories of gravity. It is assumed that the cosmological potential is formed by all matter of the Universe (including dark matter and dark energy) and that it is spatially uniform on planet scales. It is obvious that the cosmological potential, ΦCP, is several orders of magnitude greater than Earth’s gravitational potential φE (where |φE/c2|∼10−9on Earth’s surface). In our method, the tick rates of identical atomic clocks are compared at two points with different gravitational potentials, i.e. at different heights. In this case, the information on ΦCP is contained in the cosmological correction α≠0 in the relationship Δω/ω=(1+αφ/c2between the relative change of the frequencies Δω/ω (in atomic clocks) and the difference of the gravitational potential Δφ at the measurement points. We have estimated the low limit of cosmological correction, α>10-6. It is shown that using a modern atomic clock of the optical range it is possible to measure the value of α in earth-based experiments if |α|>10-5. The obtained results, in the case of their experimental confirmation, will open up new unique opportunities for the study of the Universe and the testing of various cosmological models. These results will also increase the measurement accuracy in relativistic geodesy, chronometric gravimetry, global navigation systems, and global networks of atomic clocks.

1.
M.
Schioppo
,
R. C.
Brown
,
W. F.
McGrew
,
N.
Hinkley
,
R. J.
Fasano
,
K.
Beloy
,
T. H.
Yoon
,
G.
Milani
,
D.
Nicolodi
,
J. A.
Sherman
,
N. B.
Phillips
,
C. W.
Oates
, and
A. D.
Ludlow
,
Nature Photonics
11
,
4852
(
2017
).
2.
A. D.
Ludlow
,
M. M.
Boyd
,
J.
Ye
,
E.
Peik
, and
P. O.
Schmidt
,
Rev. Mod. Phys.
87
,
637
(
2015
).
3.
E. J.
Angstmann
,
V. A.
Dzuba
, and
V. V.
Flambaum
, arXiv:physics/0407141v1 (
2004
).
4.
S. G.
Karshenboim
,
V. V.
Flambaum
, and
E.
Peik
, “Handbook of Atomic,
Molecular and Optical Physics
” (
Springer
,
New York
), p.
455
. (
2005
).
5.
E.
Reinhold
,
R.
Buning
,
U.
Hollenstein
,
A.
Ivanchik
,
P.
Petitjean
, and
W.
Ubachs
,
Phys. Rev. Lett.
96
,
151101
(
2006
).
6.
V. V.
Flambaum
, and
M. G.
Kozlov
,
Phys. Rev. Lett.
98
,
240801
(
2007
).
7.
V. V.
Flambaum
, and
V. A.
Dzuba
,
Can. J. Phys.
87
,
25
(
2009
).
8.
K.
Van Tilburg
,
N.
Leefer
,
L.
Bougas
, and
D.
Budker
,
Phys. Rev. Lett.
115
,
011802
(
2015
).
9.
A.
Derevianko
and
M.
Pospelov
,
Nature Phys.
10
,
933
936
(
2014
).
10.
Y. V.
Stadnik
and
V. V.
Flambaum
,
Phys. Rev. A
93
,
063630
(
2016
).
11.
B. M.
Roberts
,
G.
Blewitt
,
C.
Dailey
,
M.
Murphy
,
M.
Pospelov
,
A.
Rollings
,
J.
Sherman
,
W.
Williams
, and
A.
Derevianko
, arXiv:1704.06844 [hep-ph] (
2017
).
12.
A.
Einstein
,
Annal. Physik
49
,
769
(
1916
).
13.
C. W.
Chou
,
D. B.
Hume
,
T.
Rosenband
, and
D. J.
Wineland
,
Science
329
,
1630
1633
(
2010
).
14.
T.
Takano
,
M.
Takamoto
,
I.
Ushijima
,
N.
Ohmae
,
T.
Akatsuka
,
A.
Yamaguchi
,
Y.
Kuroishi
,
H.
Munekane
,
B.
Miyahara
, and
H.
Katori
,
Nature Photonics
10
,
662
(
2016
).
15.
M.
Vermeer
,
Chronometric levelling, Rep. Finnish Geodetic Inst.
83
,
1
7
(
1983
).
16.
K.
Nordtvedt
,
Phys. Rev. D
11
,
245
(
1975
).
17.
V. I.
Yudin
and
A. V.
Taichenachev
,
Laser Phys. Lett.
15
,
035703
(
2018
).
18.
P.
Wolf
and
L.
Blanchet
,
Class. Quantum Grav.
33
,
035012
(
2016
).
19.
Note that from the formal mathematical viewpoint under determination of the general gravitational potential in Eq. (6) we can add some constant C0 (universal for all Universe), which can be incorporated in cosmological potential: (ΦCP (r) + C0) → ΦCP (r). In this case, cosmological potential can be positive: ΦCP (rE) > 0 if C0 > 0. However, from the physical viewpoint the existence of C0 ≠ 0 looks quite artificially and groundlessly, because it leads to the existence of gravitational potential even for empty space in the absence of a matter.
20.
C. M.
Will
,
Living Rev. Relativity
17
,
4
(
2014
).
21.
P.
Delva
,
N.
Puchades
,
E.
Schönemann
,
F.
Dilssner
,
C.
Courde
,
S.
Bertone
,
F.
Gonzalez
,
A.
Hees
,
Ch.
Le Poncin-Lafitte
,
F.
Meynadier
,
R.
Prieto-Cerdeira
,
B.
Sohet
,
J.
Ventura-Traveset
, and
P.
Wolf
,
Phys. Rev. Lett.
121
,
231101
(
2018
).
22.
S.
Herrmann
,
F.
Finke
,
M.
Lülf
,
O.
Kichakova
,
D.
Puetzfeld
,
D.
Knickmann
,
M.
List
,
B.
Rievers
,
G.
Giorgi
,
Ch.
Günther
,
H.
Dittus
,
R.
Prieto-Cerdeira
,
F.
Dilssner
,
F.
Gonzalez
,
E.
Schönemann
,
J.
Ventura-Traveset
, and
C.
Lämmerzahl
,
Phys. Rev. Lett.
121
,
231102
(
2018
).
23.
Indeed, it is possible to assume that due to the motion of the Sun in the Galaxy the trajectory of this motion will cross areas with spatially non-uniform distribution of dark matter, and, respectively, with spatially non- uniform gravitational potential. In this case, there will be some variations of the cosmological correction α, which can be experimentally detected.
24.
V. I.
Yudin
and
A. V.
Taichenachev
, arXiv:1706.07718 [physics.gen-ph] (
2017
).
This content is only available via PDF.