Our long-term goal is to quantify changes in the viscoelastic behavior of the uterine cervix during pregnancy using Shear Wave Elasticity Imaging. In this study we compared the sensitivity of two quantitative imaging biomarkers of viscosity extracted from either a time-domain or a frequency-domain analysis of shear wave dispersion. The time-domain descriptor was the ratio R of the group speed obtained from particle velocities and particle displacements. The frequency domain descriptor was the slope S of the phase speed vs. frequency. We observed that R and S are sensitive not only to shear wave dispersion but also to the width and rate of acoustic radiation force impulse (ARFI) excitation. However, S showed the biggest contrast to changes in the tissue viscosity than R, as well as more dependence on the width and pulse duration of the ARFI. Future studies will investigate the tradeoff between contrast and noise.

1.
H.
Feltovich
,
Obstetrics Gynecology
130
,
51
63
(
2017
).
2.
H. G.
Mengesha
,
W. T.
Lerebo
,
A.
Kidanemariam
, et al.,
BMC Nursing
15
,
48
(
2016
).
3.
H.
Feltovich
,
T. J.
Hall
and
V
Berghell
,
Am J Obstet Gynecol
207
,
345
354
(
2012
).
4.
Y.
Akgul
,
R.
Holt
,
M.
Mummert
, et al.,
Endocrinology
153
,
3493
3503
(
2012
).
5.
M. L.
Akins
,
K.
Luby-Phelps
and
M.
Mahendroo
,
Journal of biomedical optics
15
,
026020
(
2010
).
6.
L. C.
Carlson
,
T. J.
Hall
,
I. M.
Rosado-Mendez
, et al.,
Ultrasound in medicine & biology
44
,
515
521
(
2017
).
7.
M.
Muller
,
D.
Aït-Belkacem
,
M.
Hessabi
, et al.,
Ultrasound in Medicine and Biology
11
,
2789
2797
(
2015
).
8.
L. C.
Carlson
,
S. T.
Romero
,
M. L.
Palmeri
, et al.,
Ultrasound in Obstetrics & Gynecology
46
,
93
98
(
2015
).
9.
E.
Hernandez-Andrade
,
A.
Aurioles
,
M.
Garcia
, et al.,
Journal of perinatal medicine
42
,
549
557
(
2014
).
10.
I. M.
Rosado-Mendez
,
M. L.
Palmeri
,
L.
Drehfal
, et al.,
Ultrasound in Medicine and Biology
43
,
790
803
(
2017
).
11.
L. C.
Carlson
,
T. J.
Hall
,
I. M.
Rosado-Mendez
, et al.,
Ultrasound in Medicine and Biology
44
,
515
521
(
2018
).
12.
I. M.
Rosado-Mendez
,
L. C.
Carlson
,
K. M.
Woo
, et al.,
Physics in Medicine and Biology
63
,
085016
(
2018
).
13.
K.
Nightingale
,
S.
McAleavey
and
G.
Trahey
,
Ultrasound in Medicine and Biology
29
,
1715
1723
(
2003
).
14.
A.
Sarvazyan
,
T. J.
Hall
,
W.
Urban
 et al.,
Current medical imaging reviews
7
,
255
282
(
2011
).
15.
K. M.
Myers
,
A. P.
Paskaleva
,
M.
House
, et al.,
Acta biomaterialia
4
,
104
116
(
2008
).
16.
W.
Yao
,
K.
Yoshida
,
M.
Fernandez
, et al.,
J Mech Behav Biomed Mater
34
,
18
26
(
2014
).
17.
R.
Lakes
and
R. S.
Lakes
,
Viscoelastic materials
(
Cambridge university press
,
2009
).
18.
T.
Deffieux
,
G.
Montaldo
,
M.
Tanter
, et al.,
IEEE transactions on medical imaging
28
,
313
322
(
2009
).
19.
K. R.
Nightingale
,
N. C.
Rouze
and
S. J.
Rosenzweig
,
IEEE transactions on ultrasonics
62
,
165
175
(
2015
).
20.
N. C.
Rouze
,
Y.
Deng
,
C. A.
Trutna
, et al.,
IEEE transactions on Ultrasonics
65
,
780
794
(
2018
).
21.
N. C.
Rouze
,
M. L.
Palmeri
and
K. R.
Nightingale
,
The Journal of the Acoustical Society of America
138
,
1012
1022
(
2015
).
22.
M. L.
Palmeri
,
A. C.
Sharma
,
R. R.
Bouchard
, et al.,
IEEE transactions on ultrasonics, ferroelectrics, and frequency control
52
,
1699
1712
(
2005
).
23.
M. L.
Palmeri
,
H.
Feltovich
,
A. D.
Homyk
, et al.,
IEEE transactions on ultrasonics, ferroelectrics, and frequency control
60
,
2053
2064
(
2013
).
24.
N. C.
Rouze
,
M. H.
Wang
,
M. L.
Palmeri
, et al.,
IEEE transactions on ultrasonics, ferroelectrics, and frequency control
57
,
2662
2670
(
2010
).
25.
M.
Mahendroo
.
Reproduction
143
,
429
438
(
2012
).
26.
J.
Brum
,
M.
Bernal
M,
JL
Gennisson
and
M.
Tanter
,
Physics in Medicine & Biology
59
,
505
523
(
2014
).
27.
L.
Peralta
L,
G.
Rus
,
N.
Bochud
and
F. S.
,
Molina
.
Journal of biomechanics
48
,
1549
1556
(
2015
).
This content is only available via PDF.