In this paper, we introduce a concept of lacunary statistically p-quasi-Cauchyness of a real sequence in the sense that a sequence (αk) is lacunary statistically p-quasi-Cauchy if for each ε > 0. A function f is called lacunary statistically p-ward continuous on a subset A of the set of real numbers ℝ if it preserves lacunary statistically p-quasi-Cauchy sequences, i.e. the sequence f (x) = (f (αn)) is lacunary statistically p-quasi-Cauchy whenever α = (αn) is a lacunary statistically p-quasi-Cauchy sequence of points in A. It turns out that a real valued function f is uniformly continuous on a bounded subset A of ℝ if there exists a positive integer p such that f preserves lacunary statistically p-quasi-Cauchy sequences of points in A.
REFERENCES
1.
C.G.
Aras
, A.
Sonmez
, H.
Cakalli
, An approach to soft functions
, J. Math. Anal.
8
, 2
, 129
–138
, (2017
).2.
D.
Burton
, and J.
Coleman
, Quasi-Cauchy Sequences, Amer. Math. Monthly
117
, 4
, 328
–333
, (2010
).3.
H.
Çakallı
, Slowly oscillating continuity
, Abstr. Appl. Anal. Hindawi Publ. Corp.
, New York, ISSN , Volume 2008
, Article ID 485706, (2008
). MR 2009b:260044.
5.
6.
H.
Çakallı
, δ-statistically quasi-Cauchy sequences
, Math. Comput. Modelling
, 53
, no. 1-2
, 397
–401
, (2011
).7.
H.
Çakalli
, Statistical ward continuity
. Appl. Math. Lett.
24
(2011
) 1724
–1728
.8.
H.
Cakalli
, N-theta-ward continuity
, Abstr. Appl. Anal.
2012
(2012
), Article ID 680456 8
pages.9.
H.
Cakalli
, A new approach to statistically quasi Cauchy sequences
, Maltepe Journal of Mathematics
, 1
, 1
, 1
–8
, (2019
).10.
H.
Çakalli
and Pratulananda
Das
, Fuzzy compactness via summability
, Appl. Math. Lett.
22
, 11
, 1665
–1669
, (2009
).11.
H.
Çakalli
, R.F. Patterson, Functions preserving slowly oscillating double sequences, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.)
62, 2
, vol. 2
. 531
–536
, (2016
).12.
H.
Çakallı
, A.
Sonmez
, and Ç.
Genç
, On an equivalence of topological vector space valued cone metric spaces and metric spaces
, Appl. Math. Lett.
25
, 3
, 429
–433
, (2012
).13.
H.
Cakalli
and O.
Mucuk
, On connectedness via a sequential method
, Revista de la Union Matematica Argentina
, 54
(2
) (2013
), 101
–109
.14.
H.
Cakalli
, A.
Sonmez
, Slowly oscillating continuity in abstract metric spaces Filomat
, 27
, 5
, 925
–930
, (2013
).15.
H.
Çakalli
, A.
Sonmez
, and C.G.
Aras
, λ-statistical ward continuity
, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.
) DOI: March 2015
.16.
D.
Djurcic
, Ljubisa D.R.
Kocinac
, M.R.
Zizovic
, Double sequences and selections
, Abstr. Appl. Anal.
Art. ID 497594, 6
pp, (2012
).17.
A.E.
Coskun
, C.G
Aras
, H.
Cakalli
, and A.
Sonmez
, Soft matrices on soft multisets in an optimal decision process
, AIP Conference Proceedings
, 1759
, 1
, 020099
(2016
); doi: 18.
I.
Canak
, and M.
Dik
, New Types of Continuities
, Abstr. Appl. Anal., Hindawi Publ. Corp.
, New York, ISSN , Volume 2010
, Article ID 258980, (2010
). doi:10.1155/2010/25898019.
Fridy
, J.A.
and Orhan
, C.
, Lacunary statistical convergence
, Pacific J. Math.
, 160
1
, 43
–51
(1993
)20.
Fridy
, J.A.
and Orhan
, C.
, Lacunary statistical summability
, J. Math. Anal. Appl
, 173
2
, 497
–504
(1993
)21.
Ljubisa D.R.
Kočinac
, Selection properties in fuzzy metric spaces
, Filomat
, 26
(2
) (2012
), 99
–106
.22.
O.
Mucuk
, T.
Şahan
On G-Sequential Continuity
, Filomat
, 28
(6
) (2014
), 1181
–1189
.23.
S.K.
Pal
, E.
Savas
, and H.
Cakalli
, I-convergence on cone metric spaces
, Sarajevo J. Math.
9
, 85
–93
, (2013
).24.
R.F.
Patterson
and H.
Cakalli
, Quasi Cauchy double sequences
, Tbilisi Math. J.
, 8
, 2
, 211
–219
, (2015
).25.
Richard F.
Patterson
, and E.
Savas
, Asymptotic equivalence of double sequences
, Hacet. J. Math. Stat.
41
, 4
, 487
–497
, (2012
).26.
H.
Sengul
, M. Et, On (λ, I)-statistical convergence of order α of sequences of function
. Proc. Nat. Acad. Sci.India Sect. A
, 88
, no.2
, 181
–186
, (2018
).27.
H.
Sengul
, M. Et, On
I-lacunary statistical convergence of order α of sequences of sets. Filomat
31
, no.8
, 2403
–2412
, (2018
).28.
M. Et,
H.
Sengul
, On pointwise lacunary statistical convergence of order α of sequences of function
. Proc. Nat. Acad. Sci.India Sect. A.
, 85
, no.2
, 253
–258
, (2015
).29.
A.
Sonmez
, On paracompactness in cone metric spaces
, Appl. Math. Lett.
23
, 494
–497
, (2010
).30.
A.
Sonmez
, and H.
Cakalli
, Cone normed spaces and weighted means
, Math. Comput. Modelling
52
(2010
) 1660
–16660
.31.
I.
Taylan
, Abel statistical delta quasi Cauchy sequences of real numbers
, Maltepe Journal of Mathematics
, 1
, 1
, 18
–23
, (2019
).32.
R.W.
Vallin
, Creating slowly oscillating sequences and slowly oscillating continuous functions
, With an appendix by Vallin
and H.
Cakalli
, Acta Math. Univ. Comenianae
, 25
, 1
, 71
–78
, (2011
).33.
Ş.
Yıldız
, İstatistiksel boşluklu delta 2 quasi Cauchy dizileri
, Sakarya University Journal of Science
, 21
, 6
, (2017
). DOI: , http://www.saujs.sakarya.edu.tr/issue/26999/33612834.
Ş.
Yıldız
, Lacunary statistical p-quasi Cauchy sequences
, Maltepe Journal of Mathematics
, 1
, 1
, 9
–17
, (2019
).
This content is only available via PDF.
© 2019 Author(s).
2019
Author(s)