We consider a version of the boundary Schwarz Lemma on a certain class which is denoted by K(α). For the function f (z) = z + c2 z2 + c3 z3 + … defined in the unit disc E such that the function f(z) belongs to the class K(α), we estimate from below the modulus of the angular derivative of the function at the boundary point b with . Moreover, we get Schwarz Lemma for the class K(α). We also investigate some inequalities obtained in terms of sharpness.
REFERENCES
1.
H. P.
Boas
, Julius and Julia: Mastering the Art of the Schwarz lemma
, American Mathematical Monthly
, 2010
, 117
, 9
, pp. 770
–785
.2.
V. N.
Dubinin
, The Schwarz inequality on the boundary for functions regular in the disc
, Journal of Mathematical Sciences Amer. Math. Monthly
, 2004
, 122
, 6
, pp. 3623
–3629
.3.
G. M.
Golusin
, Geometric Theory of Functions of Complex Variable, American Mathematical Society
, 1969
.4.
I. S.
Jack
, Functions starlike and convex of order
α, Journal of London Mathematical Society
, 1971
, 3
, pp. 469
–474
.5.
X.
Tang
, T.
Liu
and J.
Lu
, Schwarz lemma at the boundary of the unit polydisk in ℂn
, Sci. China Math.
, 2015
, 58
, 8, pp. 1639
–1652
.6.
R.
Osserman
, A sharp Schwarz inequality on the boundary
, Proceedings of the American Mathematical Society
, 2000
, 128
, 12, pp. 3513
–3517
.7.
T. Aliyev
Azeroğlu
and B. N.
Örnek
, A refined Schwarz inequality on the boundary
, Complex Variables and Elliptic Equations
, 58
, 4
(2013
), pp. 571
–577
.8.
Ch.
Pommerenke
, Boundary Behaviour of Conformal Maps, Springer-Verlag
, Berlin
, 1992
.9.
M.
Elin
, F.
Jacobzon
, M.
Levenshtein
, D.
Shoikhet
, The Schwarz lemma: Rigidity and Dynamics, Harmonic and Complex Analysis and its Applications
, Springer International Publishing
, 2014
, pp. 135
–230
.
This content is only available via PDF.
© 2019 Author(s).
2019
Author(s)