We consider a version of the boundary Schwarz Lemma on a certain class which is denoted by K(α). For the function f (z) = z + c2z2 + c3z3 + … defined in the unit disc E such that the function f(z) belongs to the class K(α), we estimate from below the modulus of the angular derivative of the function zf(z)f(z) at the boundary point b with bf(b)f(b)=11+α. Moreover, we get Schwarz Lemma for the class K(α). We also investigate some inequalities obtained in terms of sharpness.

1.
H. P.
Boas
,
Julius and Julia: Mastering the Art of the Schwarz lemma
,
American Mathematical Monthly
,
2010
,
117
,
9
, pp.
770
785
.
2.
V. N.
Dubinin
,
The Schwarz inequality on the boundary for functions regular in the disc
,
Journal of Mathematical Sciences Amer. Math. Monthly
,
2004
,
122
,
6
, pp.
3623
3629
.
3.
G. M.
Golusin
, Geometric Theory of Functions of Complex Variable,
American Mathematical Society
,
1969
.
4.
I. S.
Jack
,
Functions starlike and convex of order
α,
Journal of London Mathematical Society
,
1971
,
3
, pp.
469
474
.
5.
X.
Tang
,
T.
Liu
and
J.
Lu
,
Schwarz lemma at the boundary of the unit polydisk in ℂn
,
Sci. China Math.
,
2015
,
58
, 8, pp.
1639
1652
.
6.
R.
Osserman
,
A sharp Schwarz inequality on the boundary
,
Proceedings of the American Mathematical Society
,
2000
,
128
, 12, pp.
3513
3517
.
7.
T. Aliyev
Azeroğlu
and
B. N.
Örnek
,
A refined Schwarz inequality on the boundary
,
Complex Variables and Elliptic Equations
,
58
,
4
(
2013
), pp.
571
577
.
8.
Ch.
Pommerenke
, Boundary Behaviour of Conformal Maps,
Springer-Verlag
,
Berlin
,
1992
.
9.
M.
Elin
,
F.
Jacobzon
,
M.
Levenshtein
,
D.
Shoikhet
, The Schwarz lemma: Rigidity and Dynamics,
Harmonic and Complex Analysis and its Applications
,
Springer International Publishing
,
2014
, pp.
135
230
.
This content is only available via PDF.