We will investigate the superstability of a generalized trigonometric functional equation from the Pexideried functional equation: f (x + y) − f (x − y) = λ · g(x)h(y), which is a trigonometric functional equation mixed by the sine and cosine function.
Topics
Functional equations
REFERENCES
1.
2.
J.
d’Alembert
, Memoire sur les Principes de Mecanique (Hist. Acad. Sci
., Paris
, 1769
), pp. 278
–286
.3.
P.
Kannappan
, Functional equations and inequailitis with applications
(Springer
, 2009
).4.
J. A.
Baker
, Proc. Amer. Math. Soc.
80
, 411
–416
(1980
).5.
6.
7.
R.
Badora
and R.
Ger
, Functional Equations-Results and Advances
(Springer
, 2002
), pp. 3
–15
.8.
G. H.
Kim
, J. Inequal. Appl.
2010
, p. Doi: (2009
).9.
G. H.
Kim
, Adv. Difference Equ.
2009
, p. Doi: (2009
).10.
G. H.
Kim
, Acta Math. Sin., Engl. Ser.
25
, 965
–972
(2009
).11.
G. H.
Kim
, Banach J. of Mathematical Analysis
1
, 227
–236
(2007
).12.
G. H.
Kim
, J. Math. Anal & Appl.
1
, 237
–248
(2007
).13.
G. H.
Kim
, J. Math. Anal & Appl.
331
, 886
–894
(2007
).14.
G. H. K. I.E.
Fassi
, S.
Kabbaj
, Inter. J. Math. Anal.
9
, 2839
–2848
(2015
).15.
P.
Cholewa
, Proc. Amer. Math. Soc.
88
, 631
–634
(1983
).
This content is only available via PDF.
© 2019 Author(s).
2019
Author(s)