We will investigate the superstability of a generalized trigonometric functional equation from the Pexideried functional equation: f (x + y) − f (xy) = λ · g(x)h(y), which is a trigonometric functional equation mixed by the sine and cosine function.

1.
J. L. J. A.
Baker
and
F.
Zorzitto
,
Proc. Amer. Math. Soc.
74
,
242
246
(
1979
).
2.
J.
d’Alembert
, Memoire sur les Principes de Mecanique (
Hist. Acad. Sci
.,
Paris
,
1769
), pp.
278
286
.
3.
P.
Kannappan
,
Functional equations and inequailitis with applications
(
Springer
,
2009
).
4.
J. A.
Baker
,
Proc. Amer. Math. Soc.
80
,
411
416
(
1980
).
5.
R.
Badora
,
Rocznik Naukowo-Dydak
15
,
1
14
(
1998
).
6.
P.
Kannappan
and
G. H.
Kim
,
Ann. Acad. Pedagog. Crac. Stud. Math.
1
,
49
58
(
2001
).
7.
R.
Badora
and
R.
Ger
,
Functional Equations-Results and Advances
(
Springer
,
2002
), pp.
3
15
.
8.
G. H.
Kim
,
J. Inequal. Appl.
2010
, p. Doi: (
2009
).
9.
G. H.
Kim
,
Adv. Difference Equ.
2009
, p. Doi: (
2009
).
10.
G. H.
Kim
,
Acta Math. Sin., Engl. Ser.
25
,
965
972
(
2009
).
11.
G. H.
Kim
,
Banach J. of Mathematical Analysis
1
,
227
236
(
2007
).
12.
G. H.
Kim
,
J. Math. Anal & Appl.
1
,
237
248
(
2007
).
13.
G. H.
Kim
,
J. Math. Anal & Appl.
331
,
886
894
(
2007
).
14.
G. H. K. I.E.
Fassi
,
S.
Kabbaj
,
Inter. J. Math. Anal.
9
,
2839
2848
(
2015
).
15.
P.
Cholewa
,
Proc. Amer. Math. Soc.
88
,
631
634
(
1983
).
This content is only available via PDF.