A sequence (αk) of points in ℝ, the set of real numbers, is called ρ-statistically p quasi Cauchy if for each ε > 0, where ρ = (ρn) is a non-decreasing sequence of positive real numbers tending to ∞ such that , Δρn = O(1) and Δpαk+p = αk+p – αk for each positive integer k, p is a fixed positive integer. A real-valued function defined on a subset of ℝ is called ρ-statistically p-ward continuous if it preserves ρ-statistical p-quasi Cauchy sequences. We obtain results related to ρ-statistical p-ward continuity, ρ-statistical p-ward compactness, p-ward continuity, ward continuity, and uniform continuity.
REFERENCES
1.
C.G.
Aras
, A.
Sonmez
, H.
Cakalli
, An approach to soft functions
, J. Math. Anal.
8
, 2
, 129
–138
, (2017
).2.
D.
Burton
, and J.
Coleman
, Quasi-Cauchy Sequences, Amer. Math. Monthly
117
, 4
, 328
–333
, (2010
).3.
H. Ç
akalli
, Sequential definitions of compactness
, Appl. Math. Lett.
21
(2008
), 594
–598
.4.
H.
Çakallı
, Slowly oscillating continuity
, Abstr. Appl. Anal. Hindawi Publ. Corp.
, New York, ISSN , Volume 2008
, Article ID 485706, (2008
). MR 2009b:260045.
6.
H.
Çakallı
, On G-continuity
, Comput. Math. Appl.
61
2
(2011
), 313
–318
.7.
H.
Çakallı
, δ-statistically quasi-Cauchy sequences
, Math. Comput. Modelling
, 53
, no. 1-2
, 397
–401
, (2011
).8.
H.
Çakalli
, Statistical ward continuity
. Appl. Math. Lett.
24
(2011
) 1724
–1728
.9.
H.
Çakalli
, Statistical quasi-Cauchy sequences
, Math. Comput. Modelling
54
(2011
) 1620
–1624
.10.
H.
Cakalli
, N-theta-ward continuity
, Abstr. Appl. Anal.
2012
(2012
), Article ID 680456 8
pages.11.
H.
Cakalli
, A Variation on Statistical Ward Continuity
, Bull. Malays. Math. Sci. Soc
. DOI 12.
H.
Cakalli
, A new approach to statistically quasi Cauchy sequences
, Maltepe Journal of Mathematics
, 1
, 1
, 1
–8
, (2019
).13.
H. Ç
akalli
, C.G.
Aras
, A.
Sonmez
, Lacunary statistical ward continuity
, AIP Conf. Proc.
1676
020042
(2015
); 14.
H.
Çakalli
and Pratulananda
Das
, Fuzzy compactness via summability
, Appl. Math. Lett.
22
, 11
, 1665
–1669
, (2009
).15.
H.
Çakalli
, and M.K.
Khan
, Summability in topological spaces
, Appl. Math. Lett.
24
(2011
) 348
–352
.16.
H.
Çakalli
, R.F.
Patterson
, Functions preserving slowly oscillating double sequences
, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.)
62
, 2
, vol. 2. 531
–536
, (2016
).17.
H.
Çakallı
, A.
Sonmez
, and Ç.
Genç
, On an equivalence of topological vector space valued cone metric spaces and metric spaces
, Appl. Math. Lett.
25
, 3
, 429
–433
, (2012
).18.
H.
Cakalli
and O.
Mucuk
, On connectedness via a sequential method
, Revista de la Union Matematica Argentina
, 54
(2
) (2013
), 101
–109
.19.
H.
Çakalli
, A.
Sonmez
, and C.G.
Aras
, λ-statistical ward continuity
, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.)
DOI: March 2015
.20.
A.E.
Coskun
, C.G
Aras
, H.
Cakalli
, and A.
Sonmez
, Soft matrices on soft multisets in an optimal decision process
, AIP Conference Proceedings
, 1759
, 1
, 020099
(2016
); doi: 21.
I.
Canak
, and M.
Dik
, New Types of Continuities
, Abstr. Appl. Anal.
, Hindawi Publ. Corp., New York, ISSN , Volume 2010
, Article ID 258980, (2010
). doi:22.
Fridy
, J.A.
, On statistical convergence
, Analysis
, 5
, 301
–313
(1985
)23.
Ljubisa D.R.
Kočinac
, Selection properties in fuzzy metric spaces
, Filomat
, 26
(2
) (2012
), 99
–106
.24.
O.
Mucuk
, T.
Şahan
On G-Sequential Continuity
, Filomat
, 28
(6
) (2014
), 1181
–1189
.25.
I.S.
Özgüç
and T.
Yurdakadim
, On quasi-statistical convergence
, Commun. Fac. Sci. Univ. Ank. Series A1
61
1
(2012
) 11
–17
.26.
S.K.
Pal
, E.
Savas
, and H.
Cakalli
, I-convergence on cone metric spaces
, Sarajevo J. Math.
9
, 85
–93
, (2013
).27.
R.F.
Patterson
and H.
Cakalli
, Quasi Cauchy double sequences
, Tbilisi Math. J.
, 8
, 2
, 211
–219
, (2015
).28.
Richard F.
Patterson
, and E.
Savas
, Asymptotic equivalence of double sequences
, Hacet. J. Math. Stat.
41
, 4
, 487
–497
, (2012
).29.
I.
Taylan
, Abel statistical delta quasi Cauchy sequences of real numbers
, Maltepe Journal of Mathematics
, 1
, 1
, 18
–23
, (2019
).30.
R.W.
Vallin
, Creating slowly oscillating sequences and slowly oscillating continuous functions, With an appendix by Vallin and H. Cakalli
, Acta Math. Univ. Comenianae
, 25
, 1
, 71
–78
, (2011
).31.
Ş.
Yıldız
, Lacunary statistical p-quasi Cauchy sequences
, Maltepe Journal of Mathematics
, 1
, 1
, 9
–17
, (2019
).
This content is only available via PDF.
© 2019 Author(s).
2019
Author(s)