Animals can remodel their gene expression to compensate for the effects of different ecological factors, which can confer resistance to extreme environment alteration, such as altitude changes. Understanding response of gene expression to divergent-altitude habitats, such as Tibetan Plateau (TP) and lower altitude area, in natural populations remains one of the greatest challenges. Previous studies extensively focused on vertebrates, while the current lack of understanding about transcriptomic gene expression alteration in divergent-altitude adaptation of invertebrates, especially the insects. Here, we downloaded raw data/reads of Dolycoris baccarum distributed in 1,300 m a.s.l (above sea level) and its corresponding TP strain (3,200 m a.s.l), and performed a mixed assembly of these two transcriptomes to construct unigene set of D. baccarum. Subsequently, we analyzed the gene expression changes between two populations, and validate the sequencing data using real time quantitative PCR. A total of 4,816 differentially expressed genes were largely enriched to GO involved in DNA repair, hypoxia response, energy production, suggesting that substantial plasticity in gene expressions was mainly associated with the ability to resist UV radiation, hypoxia, and cold. Our study firstly provides novel insights into gene expression variations of insects in divergent-altitude adaptation.

1.
Z. A.
Cheviron
,
A.
Whitehead
,
R. T.
Brumfield
,
Mol. Ecol.
17
,
4556
4569
(
2008
).
2.
Y.
Wang
,
L.
Yang
,
K.
Zhou
,
Y.
Zhang
,
Z.
Song
,
S.
He
,
Genome Biol. E
vol.
7
,
2970
2982
(
2015
).
3.
Y.
Luo
,
X.
Yang
,
Y.
Gao
,
Mitochondr. DNA
24
,
313
319
(
2013
).
4.
D.
Zhao
,
Z.
Zhang
,
A.
Cease
,
J.
Harrison
,
L.
Kang
,
BMC Genomics
14
,
631
631
(
2013
).
5.
Q.
Tang
,
W.
Huang
,
J.
Guan
,
L.
Jin
,
T.
Che
,
Y.
Fu
, et al,
Gene
567
,
208
216
(
2015
).
6.
S. M.
Simelane
,
S.
Abelman
,
F. D.
Duncan
,
Acta Biotheoretica
64
,
161
196
(
2016
).
7.
D. C.
McMullen
,
K. B.
Storey
,
Insect Biochem. Molec. Biol.
38
,
367
373
(
2008
).
8.
M. L.
Yuan
,
Q. L.
Zhang
,
Z. F.
Wang
,
Z. L.
Guo
,
G. S.
Bao
,
PloS ONE
10
,
e0127257
(
2015
).
9.
M. G.
Grabherr
,
B. J.
Haas
,
M.
Yassour
,
J. Z.
Levin
,
D. A.
Thompson
,
I.
Amit
, et al,
Nature biotechnology
29
,
644
652
(
2011
).
10.
B. J.
Haas
,
A.
Papanicolaou
,
M.
Yassour
,
M.
Grabherr
,
P. D.
Blood
,
J.
Bowden
, et al,
Nat. Protocols
8
,
1494
1512
(
2013
).
11.
B.
Langmead
,
C.
Trapnell
,
M.
Pop
,
S. L.
Salzberg
,
Genome Biol.
10
,
R25
R25
(
2009
).
12.
N.
Leng
,
J. A.
Dawson
,
J. A.
Thomson
,
V.
Ruotti
,
A. I.
Rissman
,
B. M. G.
Smits
, et al,
Bioinformatics
29
,
1035
1043
(
2013
).
13.
A.
Conesa
,
S.
Götz
,
J. M.
García-Gómez
,
J.
Terol
,
M.
Talón
,
M.
Robles
,
Bioinformatics
21
,
3674
3676
(
2005
).
14.
K. J.
Livak
,
T. D.
Schmittgen
,
Methods
25
,
402
408
(
2001
).
15.
S.
Jackson
,
D.
Durocher
,
Molecular Cell
49
,
795
807
(
2013
).
16.
D.
Branzei
,
M.
Foiani
,
Nat. Rev. Mol. Cell Biol.
9
,
297
308
(
2008
).
17.
A. A.
Guerrero
,
M. C.
Gamero
,
V.
Trachana
,
A.
Fütterer
,
C.
Paciosbras
,
N. P.
Díazconcha
, et al,
Prod. Natl. Acad. Sci. USA
107
,
4159
4164
(
2010
).
This content is only available via PDF.