The CRISPR-Cas9 technique derived from bacterial immune system has been used in the majority of genome engineering applications due to its advantages of low cost and flexibility. In order to achieve efficient modifications to target genome in different cell types by CRISPR-Cas9 genome editing, three basic components are required, including 20nt sequence of sgRNA that could recognize desired DNA sequences, Cas9 protein for introducing double-strand breaks and the NGG PAM sequence for the binding between Cas9 proteins and the target genomic sites. However, the CRISPR-Cas9 technique today are facing some difficulties in adoption of further genome applications, especially those requiring high precision modifications. This is mainly because of the off-target effects, in which the spCas9 nuclease cleaves unwanted genomic sequences. To address this, a number of strategies have been developed. In this article, we mainly reviewed the factors in determining the activity of Cas9 proteins and concluded the approaches to reduce the off-target effects.

1.
Y. G.
Kim
,
J.
Cha
,
S.
Chandrasegaran
,
Proc Natl Acad Sci USA.
93
,
1156
1160
(
1996
).
2.
C.
Mussolino
,
T.
Cathomen
,
Curr Opin Chem. Biol
,
23
,
644
650
(
2012
).
3.
M. R.
Capecchi
,
Sci
,
244
,
1288
1292
(
1989
).
4.
J. S.
Kim
,
T. B.
Krasieva
,
H.
Kurumizaka
,
D. J.
Chen
,
A. M. R.
Taylor
and
K.
Yokomori
,
J Cell Physiol
,
170
,
341
347
(
2005
).
5.
F. A.
Ran
,
P. D.
Hsu
,
J.
Wright
,
V.
Agarwala
,
D. A.
Scott
and
F.
Zhang
,
Trends in Genetics Tig
,
8
,
2281
(
2013
).
6.
F. A.
Ran
,
P. D.
Hsu
,
C. Y.
Lin
,
J. S.
Gootenberg
,
S.
Konermann
,
A. E.
Trevino
,
D. A.
Scott
,
A.
Inoue
,
S.
Matoba
,
Y.
Zhang
,
F.
Zhang
,
Cell
,
154
,
1380
1389
(
2013
).
7.
B.
Wiedenheft
,
S. H.
Sternberg
,
J. A.
Doudna
,
Nature
,
482
,
331
338
(
2012
).
8.
M.
Jinek
,
K.
Chylinski
,
I.
Fonfara
,
M.
Hauer
,
J. A.
Doudna
,
E.
Charpentier
,
Sci
,
337
,
816
821
(
2012
).
9.
B.
Wiedenheft
,
S. H.
Sternberg
,
J. A.
Doudna
,
Nature
,
482
,
331
338
(
2012
).
10.
H.
Liu
,
X.
Wang
,
L.
Qi
,
Bio-protocol
,
7
, (
2017
)
11.
K.
Xie
,
B.
Minkenberg
,
Y.
Yang
Y.
Bio-protocol
,
4
, (
2014
)
12.
M.
Adli
.
Nat Commun
,
9
, (
2018
).
13.
M.
Jinek
,
A.
East
,
A.
Cheng
,
S.
Lin
,
E.
Ma
, and
J.
Doudna
,
Elife
,
2
,
e00471
(
2013
)
14.
P. D.
Hsu
,
D. A.
Scott
,
J. A.
Weinstein
,
F. A.
Ran
,
S.
Konermann
,
V.
Agarwala
,
Y.
Li
,
E. J.
Fine
,
X.
Wu
,
O.
Shalem
,
T. J.
Cradick
,
L. A.
Marraffini
,
G.
Bao
,
F.
Zhang
,
Nat Biotechnol
,
31
,
827
832
(
2013
)
15.
Y. F.
Fu
,
J. A.
Foden
,
C.
Khayter
,
M. L.
Maeder
,
D.
Reyon
,
J. K.
Joung
and
J. D.
Sander
.
Nat Biotechnol
,
31
,
822
826
(
2013
)
16.
N.
Sugimoto
,
S.
Nakano
,
M.
Katoh
,
A.
Matsumura
,
H.
Nakamuta
,
T.
Ohmichi
,
M.
Yoneyama
,
M.
Sasaki
,
Biochemistry
34
,
11211
11216
(
1995
).
17.
R. M.
Gupta
and
K.
Musunuru
,
Clin Invest
,
124
,
4154
61
(
2014
).
18.
B. P.
Kleinstiver
,
M. S.
Prew
,
S. Q.
Tsai
,
V. V.
Topkar
,
N. T.
Nguyen
,
Z. L.
Zheng
,
A. P. W.
Gonzales
,
Z. Y.
Li
,
R. T.
Peterson
,
J. R. J.
Yeh
,
M. J.
Aryee
and
J. K.
Joung
,
Nature
,
523
,
481
(
2015
).
19.
Y. L.
Zhang
,
X. L.
Ge
,
F. Y.
Yang
,
L. P.
Zhang
,
J. Y.
Zheng
,
X. F.
Tan
,
Z. B.
Jin
,
J.
Qu
and
F.
Gu
,
Sci Rep
,
4
,
5405
(
2014
).
This content is only available via PDF.