Sichuan Basin is one of centers of the main distribution area of pummelo (Citrus grandis Osbeck) genetic germplasms. It is necessary to analyze the genetic relationship of the local germplasms and to get enough information for protecting and utilizing them in the future. In this study, fifteen simple sequence repeat (SSR) primers mined in Citrus were used to detected the genetic diversity of 73 pummelo germplasms and rootstocks collected in Sichuan Basin. A total of 123 alleles were generated across 15 SSR loci, with an average of 8.2 alleles per locus. The observed heterozygosity (Ho) ranged from 0.0000 to 0.7429 with an average 0.2090 per locus, while expected heterozygosity (He) varied from 0.0273 to 0.6068 with an average of 0.2395 per locus. Obvious differences of genetic diversity were observed among different pummelo varieties groups. The average genetic diversity index among groups showed as follows: Na = 1.6935, H = 1.4404, I = 0.3363, Ho = 0.2570, He = 0.2470. At the group level, rootstocks of C. jonus and Poncirus trifoliata revealed the highest genetic diversity index (H = 1.9685, I = 0.6854, Ho = 0.3556, He = 0.5244), and Shatian pummelo varieties showed the lowest index (H = 1.2486, I = 0.2202, Ho = 0.1611, He = 0.1590). The highest genetic similarity coefficient (0.9668) was observed between Guanxi Miyou & bud mutants group, and Wendan pummelo varieties group, and the lowest one (0.7831) was detected between Guanxi Miyou & bud mutants group, and Putao pummelo varieties group (C. paradisi). 73 accessions of pummelo and rootstocks were clustered into five groups with UPGMA method, consisting of Shatian pummelo varieties group, Wendan pummelo varieties group, Guanxi Miyou & bud mutants group, Putao pummelo varieties group, and rootstocks of C. junos (Pujiang Xiangcheng and Ziyang Xiangcheng) and Poncirus trifoliata. No significant differentiation was observed between Guanxi Miyou and bud mutants by SSR markers.

1.
C. J.
Huang
,
Flora of China
(
Science Press
,
Beijing
,
1997
).
2.
Y. M.
Ye
,
South China Fruits
,
26
,
3
5
(
1997
).
3.
T. F.
He
,
Grapefruit cultivation in China
(
China Agricultural Press
,
Beijing
,
1999
).
4.
X. X.
Deng
and
S. A.
Peng
,
Citrus
(
China Agricultural Press
,
Beijing
,
2013
).
5.
L.
Zane
,
L.
Bargelloni
and
T.
Patarnello
,
Mol. Ecol.
11
,
1
16
(
2002
).
6.
N. A.
Barkley
,
M. L.
Roose
,
R. R.
Krueger
and
C. T.
Federici
,
Theor. Appl. Genet.
112
,
1519
1531
(
2006
).
7.
Y. Q.
Zhou
,
Application on DNA molecular marker technology in plant study
(
Chemical Industry Press
,
Beijing
,
2005
).
8.
M. K.
Biswas
,
Exploring SSR markers based on the BES and EST sequences for the linkage map of citrus
. (
2010
).
9.
D.
Jiang
,
G. Y.
Zhong
and
Q. B.
Hong
,
J. Genet. Genomics
,
33
,
345
353
(
2006
).
10.
D.
Gao
and
Y. Y.
Zhu
,
Hereditas
31
,
668
673
(
2009
).
11.
R.
Peakall
and
P. E.
Smouse
,
Bioinformatics
,
28
,
2537
2539
(
2012
).
12.
F. J.
Rohlf
,
NTSYS-pc numerical taxonomy and multivariate analysis system version 2.1
[OL]. (
Applied Biostatistics Inc.
,
New York
,
2000
)
13.
H. R. R.
Guoranaie
,
R. F.
Ghazvini
,
B.
Golein
and
A. R.
Nabipour
,
Hortic. Environ. Biotechnol.
51
,
343
347
(
2010
).
14.
Y.
Liu
,
Molecular phylogenetic analysis and core collection construction using SSR and AFLP markers in pummelo
(
Huazhong Agricultural University
,
Wuhan
,
2005
).
15.
Y.
Liu
,
D. C.
Liu
,
B.
Wu
and
Z. H.
Sun
,
J. Agri. Biotchnol.
14
,
90
95
(
2006
).
16.
D. F.
Liu
,
W.
Chen
,
S. S.
Lin
,
W. R.
Xu
,
X. Z.
Guo
and
P. C.
Huang
,
J. Fruit Sci.
34
,
166
174
(
2017
).
17.
Y.
Liu
,
Z. H.
Sun
,
D. C.
Liu
,
B.
Wu
and
J. J.
Tao
,
Sci. Agri. Sinica
,
38
,
2308
2315
(
2005
).