Rice panicle architecture is a key agronomical trait that directly contributes to grain productivity. The complexity of the developmental process of the young panicle determines the complexity of its regulatory molecular mechanism. This paper briefly introduces the general process of panicle development and summarizes the important genes/quantitative trait loci regulating panicle development, identified and characterized by mutant screening and map cloning in recent years. According to their roles in the rice panicle development process, these genes are divided into 3 categories: initiation and maintenance of axillary meristems, size of meristem, and elongation of the branches. In recent years, knowledge on the epigenetic regulatory mechanism of panicle development has improved. In addition, development of the young panicle has been confirmed to be closely related to the regulation of plant hormones. Finally, the new genome editing tool clustered regularly interspaced short palindromic repeats/associated protein-9 nuclease and epigenome-wide association studies are expected to contribute to further understand the molecular mechanisms of panicle development, which might help improving panicle traits for increasing grain yield.

1.
T.
Sakamoto
and
M.
Matsuoka
,
Generating high-yielding varieties by genetic manipulation of plant architecture
.
Current opinion in biotechnology
15
,
144
147
(
2004
).
2.
Y.
Wang
and
J.
Li
,
Rice, rising. Nature genetics
40
,
1273
1275
(
2008
).
3.
Q.
Zhang
,
Strategies for developing Green Super Rice
.
Proceedings of the National Academy of Sciences of the United States of America
104
,
16402
16409
(
2007
).
4.
T.
Sakamoto
, and
M.
Matsuoka
,
Identifying and exploiting grain yield genes in rice
.
Current opinion in plant biology
11
,
209
214
(
2008
).
5.
M.
Komatsu
, and
M.
Maekawa
,
K.
Shimamoto
, and
J.
Kyozuka
,
The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development
.
Developmental biology
231
,
364
373
(
2001
).
6.
K.
Komatsu
,
M.
Maekawa
,
S.
Ujiie
,
LAX and SPA: major regulators of shoot branching in rice
.
Proceedings of the National Academy of Sciences of the United States of America
100
,
11765
11770
(
2003
).
7.
T.
Oikawa
, and
J.
Kyozuka
,
Two-Step Regulation of LAX PANICLE1 Protein Accumulation in Axillary Meristem Formation in Rice
.
The Plant cell
21
,
1095
1108
(
2009
).
8.
H.
Tabuchi
, and
Y.
Zhang
, and
S.
Hattori
,
LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems
.
The Plant cell
23
,
3276
3287
(
2011
).
9.
N. N.
Rao
, and
K.
Prasad
, and
P. R.
Kumar
, and
U.
Vijayraghavan
,
Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture
.
Proceedings of the National Academy of Sciences of the United States of America
105
,
3646
3651
(
2008
).
10.
K.
Ikeda
, and
M.
Ito
,
N.
Nagasawa
,
J.
Kyozuka
, and
Y.
Nagato
,
Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate
.
The Plant journal: for cell and molecular biology
51
,
1030
1040
(
2007
).
11.
K.
Ikeda-Kawakatsu
,
M.
Maekawa
,
T.
Izawa
,
J.
Itoh
, and
Y.
Nagato
,
ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1
.
The Plant journal: for cell and molecular biology
69
,
168
180
(
2012
).
12.
M.
Komatsu
,
A.
Chujo
,
Y.
Nagato
,
K.
Shimamoto
, and
J.
Kyozuka
,
FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets
.
Development
130
,
3841
3850
(
2003
).
13.
X.
Bai
,
Y.
Huang
, and
D.
Mao
,
Regulatory role of FZP in the determination of panicle branching and spikelet formation in rice
.
Scientific reports
6
,
19022
(
2016
).
14.
Y.
Jiao
,
Y.
Wang
, and
D.
Xue
,
Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice
.
Nature genetics
42
,
541
544
(
2010
).
15.
K.
Miura
,
M.
Ikeda
, and
A.
Matsubara
,
OsSPL14 promotes panicle branching and higher grain productivity in rice
.
Nature genetics
42
,
545
549
(
2010
).
16.
K.
Kobayashi
,
M.
Maekawa
,
A.
Miyao
,
H.
Hirochika
, and
J.
Kyozuka
,
PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice
.
Plant & cell physiology
51
,
47
57
(
2010
).
17.
L.
Wang
,
S.
Sun
, and
J.
Jin
,
Coordinated regulation of vegetative and reproductive branching in rice
.
Proceedings of the National Academy of Sciences of the United States of America
112
,
15504
15509
(
2015
).
18.
M.
Nakagawa
,
K.
Shimamoto
, and
J.
Kyozuka
,
Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice
.
The Plant journal: for cell and molecular biology
29
,
743
750
(
2002
).
19.
A.
Yoshida
,
Y.
Ohmori
,
H.
Kitano
,
F.
Taguchi-Shiobara
, and
H. Y.
Hirano
,
ABERRANT SPIKELET AND PANICLE1, encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice
.
The Plant Journal
70
,
327
339
(
2012
).
20.
W.
Tanaka
,
T.
Toriba
, and
H. Y.
Hirano
,
Three TOB1-related YABBY genes are required to maintain proper function of the spikelet and branch meristems in rice
.
New Phytologist
215
,
825
839
(
2017
).
21.
M. R.
Tucker
, and
T.
Laux
,
Connecting the paths in plant stem cell regulation
.
Trends in cell biology
17
,
403
410
(
2007
).
22.
B.
Veit
,
Hormone mediated regulation of the shoot apical meristem
.
Plant molecular biology
69
,
397
408
(
2009
).
23.
T.
Werner
, and
V.
Motyka
,
M.
Strnad
and
T.
Schmulling
,
Regulation of plant growth by cytokinin
.
Proceedings of the National Academy of Sciences of the United States of America
98
,
10487
10492
(
2001
).
24.
T.
Werner
,
V.
Motyka
, and
V.
Laucou
,
Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity
.
The Plant cell
15
,
2532
2550
(
2003
).
25.
M.
Riefler
,
O.
Novak
,
M.
Strnad
, and
T.
Schmulling
,
Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism
.
The Plant cell
18
,
40
54
(
2006
).
26.
T.
Kurakawa
,
N.
Ueda
, and
M.
Maekawa
,
Direct control of shoot meristem activity by a cytokinin-activating enzyme
.
Nature
445
,
652
655
(
2007
).
27.
M.
Ashikari
,
H.
Sakakibara
,
S.
Lin
, et al 
Cytokinin oxidase regulates rice grain production
.
Science
309
,
741
745
(
2005
).
28.
S.
Li
,
B.
Zhao
,
D.
Yuan
, et al 
Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression
.
Proceedings of the National Academy of Sciences of the United States of America
110
,
3167
3172
(
2013
).
29.
M.
Li
,
D.
Tang
,
K.
Wang
, et al 
Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice
.
Plant biotechnology journal
9
,
1002
1013
(
2011
).
30.
H.
Yu
,
E. H.
Murchie
,
Z. H.
González-Carranza
,
K. A.
Pyke
, and
J.
Roberts
,
A. Decreased photosynthesis in the erect panicle 3 (ep3) mutant of rice is associated with reduced stomatal conductance and attenuated guard cell development
.
Journal of experimental botany
66
,
1543
1552
(
2015
).
31.
Z.
Lu
,
H.
Yu
,
G.
Xiong
, et al 
Genome-Wide Binding Analysis of the Transcription Activator IDEAL PLANT ARCHITECTURE1 Reveals a Complex Network Regulating Rice Plant Architecture
.
The Plant cell
25
,
3743
3759
(
2013
).
32.
X.
Huang
,
Q.
Qian
,
Z.
Liu
, et al 
Natural variation at the DEP1 locus enhances grain yield in rice
.
Nature genetics
41
,
494
497
(
2009
).
33.
Y.
Zhou
,
J.
Zhu
,
Z.
Li
, et al 
Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication
.
Genetics
183
,
315
324
(
2009
).
34.
F.
Li
,
W.
Liu
,
J.
Tang
, et al 
Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation
.
Cell research
20
,
838
849
(
2010
).
35.
Y.
Abe
,
K.
Mieda
,
T.
Ando
, et al 
The SMALL AND ROUND SEED1 (SRS1/ DEP2) gene is involved in the regulation of seed size in rice
.
Genes & genetic systems
,
85
,
327
339
(
2010
).
36.
K.
Zhu
,
D.
Tang
,
C.
Yan
, et al 
Erect panicle2 encodes a novel protein that regulates panicle erectness in indica rice
.
Genetics
184
,
343
350
(
2010
).
37.
S.
Li
,
Q.
Qian
,
Z.
Fu
, et al 
Short panicle1 encodes a putative PTR family transporter and determines rice panicle size
.
The Plant journal: for cell and molecular biology
58
,
592
605
(
2009
).
38.
T.
Ishii
,
K.
Numaguchi
,
K.
Miura
, et al 
OsLG1 regulates a closed panicle trait in domesticated rice
.
Nature genetics
45
,
462
465
, 465e461-462 (
2013
).
39.
Z.
Zhu
,
L.
Tan
,
Y.
Fu
, et al 
Genetic control of inflorescence architecture during rice domestication
.
Nature communications
4
,
2200
(
2013
).
40.
X.
Li
,
Q.
Qian
,
Z.
Fu
, et al 
Control of tillering in rice
.
Nature
422
,
618
621
(
2003
).
41.
H.
Lin
,
R.
Wang
,
Q.
Qian
, et al 
DWARF27, an Iron-Containing Protein Required for the Biosynthesis of Strigolactones, Regulates Rice Tiller Bud Outgrowth
.
The Plant Cell Online
21
,
1512
1525
(
2009
).
42.
X.
Song
,
Z.
Lu
,
H.
Yu
, et al 
IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice
.
Cell research
27
,
1128
1141
(
2017
).
43.
L.
Zhang
,
H.
Yu
,
B.
Ma
, et al 
A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice
.
Nature communications
,
8
,
14789
(
2017
).
44.
J.
Wang
,
H.
Yu
,
G.
Xiong
, et al 
Tissue-Specific Ubiquitination by IPA1 INTERACTING PROTEIN1 Modulates IPA1 Protein Levels to Regulate Plant Architecture in Rice
.
The Plant cell
29
,
697
707
(
2017
).
45.
X.
Liu
,
S.
Zhou
,
W.
Wang
, et al 
Regulation of histone methylation and reprogramming of gene expression in the rice inflorescence meristem
.
The Plant cell
27
,
1428
1444
(
2015
).
46.
X.
Chen
, and
D. X.
Zhou
,
Rice epigenomics and epigenetics: challenges and opportunities
.
Current opinion in plant biology
16
,
164
169
(
2013
).
47.
S.
Moritoh
,
C. H.
Eun
,
A.
Ono
, et al 
Targeted disruption of an orthologue of DOMAINS REARRANGED METHYLASE 2, OsDRM2, impairs the growth of rice plants by abnormal DNA methylation
.
The Plant journal: for cell and molecular biology
71
,
85
98
(
2012
).
48.
L.
Zhao
,
L.
Tan
,
Z.
Zhu
, et al 
PAY1improves plant architecture and enhances grain yield in rice
.
The Plant Journal
83
,
528
536
(
2015
).
49.
Y.
Morita
, and
J.
Kyozuka
,
Characterization of OsPID, the Rice Ortholog of PINOID, and its Possible Involvement in the Control of Polar Auxin Transport
.
Plant and Cell Physiology
48
,
540
549
(
2007
).
50.
T.
Arite
,
M.
Umehara
,
S.
Ishikawa
, et al 
d14, a Strigolactone-Insensitive Mutant of Rice, Shows an Accelerated Outgrowth of Tillers
.
Plant and Cell Physiology
50
,
1416
1424
(
2009
).
51.
S.
Ishikawa
,
Suppression of Tiller Bud Activity in Tillering Dwarf Mutants of Rice
.
Plant and Cell Physiology
46
,
79
86
(
2005
).
52.
Z.
Tian
,
Q.
Qian
,
Q.
Liu
, et al 
Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities
.
Proceedings of the National Academy of Sciences of the United States of America
106
,
21760
21765
(
2009
).
53.
S.
Crowell
,
P.
Korniliev
,
A.
Falcao
, et al 
Genome-wide association and high-resolution phenotyping link Oryza sativa panicle traits to numerous trait-specific QTL clusters
.
Nature communications
7
,
10527
(
2016
).
54.
X.
Li
,
J.
Zhu
,
F.
Hu
, et al 
Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression
.
BMC genomics
13
,
300
(
2012
).
55.
E. J.
Richards
,
Natural epigenetic variation in plant species: a view from the field
.
Current opinion in plant biology
14
,
204
209
(
2011
).
56.
A. Y.
Chu
,
A.
Tin
,
P.
Schlosser
, et al 
Epigenome-wide association studies identify DNA methylation associated with kidney function
.
Nature communications
8
,
1286
(
2017
).
This content is only available via PDF.