The work presents the concept of a gun barrel reinforced with the continuous filament. The barrel’s vulnerability to vibration and bending during shooting significantly affects the accuracy of fire. The phenomenon of vibrations of the barrel is compensated by its mass and such parameters as the maximum pressure acting in its front part, i.e. the cartridge chamber and the inner walls of the barrel to the range of maximum internal pressure and pressure exerted on the bottom of the projectile and internal temperature. The selection of the appropriate stiffness and length of the barrel consists in reducing the temperature ratio of the gas mixture behind the projectile when it is leaving the barrel to the gas mixture being the decomposition products of propellant explosives under isochoric and isothermal conditions. It has been proposed to reinforce the model of the barrel with filament carbon fiber to improve stiffness while reducing its mass. This model was subjected to numerical analyses using the ABAQUS program. On the basis of the results obtained in the form of stress distribution occurring in the wall of the barrel with a complex structure, the fatigue strength and certain modal forms of the analyzed barrels have been predicted. The FEM results were verified based on a modal experiment carried out on the real barrel.

1.
R. E.
Tompkins
,
K. J.
White
,
W. F.
Oberle
, and
A. A.
Juchasz
,
Traveling charge gun firing using very high burning rate propellants
(BRL-TR-2970,
Ballistic Research Laboratory
,
Aberdeen Proving Ground, MD
, December
1988
).
2.
D. E.
Carlucci
and
S. S.
Jacobson
,
Ballistic: Theory and design of guns and ammunition
, 2nd Edition (
CRC Press
,
Boca Raton
,
2013
).
3.
M.
Sieriebriakow
,
Internal ballistics
(
WMON
,
Warsaw
,
1955
) (in Polish).
4.
D. L.
Kruczinski
and
J. R.
Hewitt
,
Temperature compensation techniques and technologies. An Overview
(BRL-TR-3283,
Ballistic Research Laboratory
,
Aberdeen Proving Ground, MD
, October
1991
).
5.
M. S.
Qatu
,
Vibration of laminated shells and plates
(
Elsevier
,
Oxford
,
2004
).
6.
W.
Soedel
,
Vibrations of shells and plates
, Third Edition (
Marcel Dekker
,
New York
,
2004
).
7.
M. S.
Qatu
,
J. Vib. Control
5
,
6
,
851
889
(
1999
).
8.
K.
Suzuki
,
G.
Shikanai
,
T.
Kosawada
, and
M.
Tabata
,
T. Jpn. Soc. Mech. Eng. Series C
61
,
849
856
(
1995
).
9.
K.
Suzuki
,
G.
Shikanai
, and
K.
Nakano
,
T. Jpn. Soc. Mech. Eng. Series C
61
,
863
870
(
1995
).
10.
P.
Lisy
and
M.
Stiavnicky
,
Probl. Mechatronics: Armament, Aviation, Safety Engineering
5
,
1
,
9
14
(
2014
).
11.
Y.
Zhao
,
Q.
Zhou
, and
P.
Yue
, “
Research on vibration characteristics of gun barrel based on contact model
,” in
Advances in Energy Science and Environment Engineering
,
AIP Conference Proceedings
1892, edited by
F.
Wu
and
P.
Zhou
(
American Institute of Physics
,
Melville, NY
,
2017
), pp.
020017-1
020017-7
.
12.
Ƃ. B. Opлoв, Э. К.Лapмaн, B. Г. Maликов,
Уcтoйcтвo и пpoeктиpoвaниe cтвoлов apтиллepийcкиx opyдий
, (
Maшинocтpoeниe
,
Mocквa
1976
).
13.
X.
Cheng
,
Y.
Wu
, and
X.
Guan
, “
The transient stress and life analysis of a gun tube
,” in
Design and Analysis
,
Proceedings of the ASME 2014 Pressure Vessels & Piping Conference PVP2014
(
ASME
,
Anaheim, California, USA
,
2014
), Paper No. PVP2014-28278, pp.
V003T03A093
, 7 pages.
14.
B. Г.
Caдoвcкий
,
Ocнoвaния ycтpoйcтвa мaтepиaльнoй чacти apтиллepии
, (
Boeниздaт
,
Mocквa
1956
).
15.
A.
Littlefield
,
E.
Hyland
,
A.
Andalora
,
N.
Klein
,
R.
Langone
,
R.
Becker
,
J. Press. Vess-T. ASME
128
,
2
,
257
262
(
2006
).
16.
H. H.
Buchter
,
Apparate und Armaturen der Chemischen Hochdrucktechnik
(
Springer
,
Berlin
1967
).
17.
K.
Jamroziak
,
M.
Bocian
,
D.
Pyka
, and
M.
Kulisiewicz
, “
Numerical analysis of the dynamic impact of a rifle barrel during a shot
,” in
Mechatronics: Ideas for Industrial Applications
,
Proceedings of 4th International Conference Mechatronics
2017
(in press).
18.
J.
Lazowski
,
J.
Malachowski
,
T.
Niezgoda
,
B. Military Univ. Techn.
3
,
235
245
(
2008
).
19.
P.
Platek
,
K.
Damaziak
,
J.
Malachowski
,
P.
Kupidura
,
R.
Wozniak
, and
M.
Zahor
,
Def. Sci. J.
65
,
6
,
431
437
(
2015
).
20.
M. K.
Dewangan
,
S. K.
Panigrahi
,
J. Mech. Sci. Technol.
29
,
7
,
2933
2938
(
2015
).
This content is only available via PDF.