The paper discusses the impact of explosively formed projectiles (EFP) on the process of penetration of armor elements. The protective abilities of homogeneous armor plates and their structure as a result of fast-changing phase transitions have been analyzed. The phenomenon of exposing the analyzed energy-absorbing shield to the EFP impact was also considered in terms of numerical methods. The obtained results constituted the basis for concluding the hydrodynamic effect of the EFP projectile on the armor structure. The extensive metallographic analysis of changes in the structure of steel armor elements within the area of the crater’s formation and the punctuated spigot for comparison with the structure of the armor before shooting has been presented.

1.
P. O. K.
Krehl
, History of Shock Waves, Explosions and impact. A chronological and biographical reference (
Springer, Berlin Heidelberg
,
2009
).
2.
H.
Shekhar
,
Cent. Eur. J. Energ. Mat.
9
(
2
),
155
185
(
2012
).
3.
G.
Hussain
,
A.
Hameed
,
J. G.
Hetherington
,
A. Q.
Malik
and
K.
Sanaullah
,
J. Appl. Mech. Tech. Ph+.
54
(
1
),
10
20
(
2013
).
4.
M.
Markovic
,
P.
Elek
,
S.
Jaramaz
,
M.
Milinowic
and
D.
Mickovic
,
Numerical and analytical approach to the modeling of explosively formed projectiles
,
Proceedings 6th International Scientific Conference on Defensive Technologies OTEH2014
, edited by
Z.
Anastasijević
(
The Military Technical Institute
,
Belgrade, Serbia
), pp.
235
240
(
2014
).
5.
M.
Ahmed
,
A. Q.
Malik
,
S.A.
Rofi
and
Z.X.
Huang
,
Engineering, Technology & Applied Science Research
6
(
1
),
913
916
(
2016
).
6.
K.
Jach
,
K.
Rutyna
,
R.
Swierczynski
and
J.
Zuk
,
Problems of Mechatronics: Armament, Aviation
,
Safety Engineering
34
(
94
),
135
143
(
2005
).
7.
F.
Hu
,
H.
Wu
,
Q.
Fang
,
J. C.
Liu
,
B.
Liang
and
X. Z.
Kong
,
Int. J. Impact Eng.
109
,
150
166
(
2017
).
8.
E.
Krzystala
,
A.
Mezyk
and
S.
Kciuk
,
Int. J. Inj. Control Sa.
23
(
2
),
170
178
(
2016
).
9.
L.
Bookouta
,
P.
Mulliganb
and
J.
Bairdb
,
Procedia Engineering
85
,
60
569
(
2013
).
10.
B.
Zygmunt
,
B.
Machowski
,
Z.
Wilk
,
P.
Koslik
and
M.
Makowski
,
Mechanik
86
(
7
),
863
874
(
2013
).
11.
A.
Wisniewski
,
Cent. Eur. J. Energ. Mat.
10
(
3
),
439
452
(
2013
).
12.
A.
Kurzawa
,
D.
Pyka
,
M.
Bocian
,
K.
Jamroziak
and
J.
Sliwinski
,
Arch. Civ. Mech. Eng.
18
(
4
),
1686
1697
(
2018
).
15.
M.
Bergh
,
A.
Helte
and
J.
Lundgren
,
Material models for tantalum – a validation study for EFP application
,
Proceedings 26th International Symposium on Ballistics
, edited by
R.G.
Ames
,
R.D.
Boeka
(
The Ballistics Division of the National Defense Industrial Association
,
Miami, Florida, USA
,
2011
), pp.
93
102
.
16.
J.
Janiszewski
and
R.
Panowicz
,
Solid State Phenomena
165
,
66
72
(
2010
).
17.
E.
Liden
,
J.
Lundgren
and
M.
Bergh
,
EFP warheads against explosive reactive armour
,
Proceedings 28th International Symposium on Ballistics
, edited by
R.G.
Baker
,
D.
Templeton
(
The National Defense Industrial Association
,
Atlanta, USA
), pp.
1266
1275
(
2014
).
18.
M.
Grazka
and
J.
Janiszewski
,
Engng. Trans.
60(3)
,
215
223
(
2012
).
19.
P.
Baranowski
,
J.
Janiszewski
and
J.
Malachowski
,
Arch. Mech.
66
(
6
),
429
452
(
2014
).
20.
D.
Kołodziejczyk
,
P.
Kupidura
,
Z.
Leciejewski
,
R.
Panowicz
,
Z.
Surma
and
M.
Zahor
,
Counterprojectile for active protection system
,
Proceedings of the 27th International Symposium on Ballistics
, edited by
M.
Wickert
,
M.
Salk
(
International Ballistics Society
,
Freiburg, Germany
), pp.
1904
1913
(
2013
).
This content is only available via PDF.