Over the last decades checking copositivity of matrices by simplicial subdivision of the unit simplex has made a big progress. Recently it has been shown that surprisingly the use of regular simplicial subdivisions may have some advantage over traditional iterative bisection of simplices. In this contribution, we pose the question whether regular subdivisions may provide opportunities in copositivity testing.

1.
I. M.
Bomze
,
M.
Dür
,
E.
de Klerk
,
C.
Roos
,
A. J.
Quist
, and
T.
Terlaky
,
On Copositive Programming and Standard Quadratic Optimization Problems
,
Journal of Global Optimization
18
,
301
320
(
2000
).
2.
S.
Bundfuss
and
M.
Dür
,
Algorithmic copositivity detection by simplicial partition
,
Linear Algebra and its Applications
428
,
1511
1523
(
2008
).
3.
J.
Žilinskas
and
M.
Dür
,
Depth-first simplicial partition for copositivity detection, with an application to MaxClique
,
Optimization Methods and Software
26
,
499
510
(
2011
).
4.
L. G.
Casado
,
E. M. T.
Hendrix
,
J. M. G.
Salmerón
,
B. G.
-
Tóth
, and
I.
Garćıa
,
On Grid Aware Refinement of the Unit Hypercube and Simplex: Focus on the Complete Tree Size
,
Computational Science and Its Applications – ICCSA 2017
:
17th International Conference
,
Trieste, Italy
,
July 3-6, 2017
, Proceedings, Part III
165
180
(
2017
).
5.
B.
G.-Tóth
,
E. M. T.
Hendrix
,
L. G.
Casado
, and
I.
Garćıa
,
On refinement of the unit simplex using regular simplices
,
Journal of Global Optimization
64
,
305
323
(
2016
).
This content is only available via PDF.