Generally, Thermoforming is used for the production of simple shaped packaging or housing parts, which do not feature any additional functions. However, by the use of heat conductive plastic materials, a heat loss function can be implemented to the thermoformed parts. Increased filler contents are correlated with higher heat conductivity. Unfortunately, higher filler content also leads to a degraded thermoformability of plastic sheets. As a result, simulation becomes more and more important, when operating the thermoforming process at its limits.

To obtain high predictive accuracy in thermoforming simulation, material models as well as data fitting methods are needed, which match with the real thermoforming material and process. In this investigation the use of the K-BKZ model for thermoforming simulation of heat conductive plastics is evaluated. Two different kinds of parameter fitting algorithms are examined. On the one hand, the K-BKZ model is fitted by a reverse-engineering procedure using the IKT Thermoforming-Material-Characterization-test (TMC-test) as reference test. On the other hand, classic rheological measurements by means of rotational rheometry and Rheotens-test are used for the data fitting of material parameters. As reference material a polystyrene is combined with two graphite fillers (spherical and platelet). The predictive accuracy of the material model and the two parameter fitting procedures are quantified by a comparison of the simulation with real thermoforming experiments.

1.
C.
Bonten
, “Kunststofftechnik - Einführung und Grundlagen,“ 2nd edition (
Hanser
,
Munich
,
2016
).
2.
C.
Heinle
, “
Simulationsgestützte Entwicklung von Bauteilen aus wärmeleitenden Kunststoffen
,“ Ph.D. thesis,
Universität Erlangen-Nürnberg, Lehrstuhl für Kunststofftechnik
,
2012
.
3.
K.
Landsecker
and
C.
Bonten
, “
Investigation on the Thermoformability of Heat Conductive Plastics
,“ in
PPS Europe Africa Conference
26.-29.06.2017 (
Dresden
,
2017
).
4.
B.
Hegemann
, “
Deformationsverhalten von Kunststoffen beim Thermoformen
,” Ph.D. thesis,
Universität Stuttgart, Institut für Kunststoffkunde und Kunststoffprüfung
,
2004
.
5.
Wagner
,
M.H.
Zur Netzwerktheorie von Polymer-Schmelzen
,“ in
Rheologica Acta
,
1979
,
18
(
1
).
6.
K.
Kouba
,
P.
Novotny
and
A.
Kech
Viscoelastic Material Characterization At Large Deformation
,” in
Volume II Materials, Antec Conference Proceedings
2001
, (
SPE
,
Dallas
, 2001), pp.
830
833
.
7.
Marathe
,
D.
 et al., “
Effect of Plug Temperature on the Strain and Thickness Distribution of Components Made by Plug Assist Thermoforming
,” in
International Polymer Processing
,
2016
.
8.
Takahashi
,
T.
,
J.I.
Takimotound
K.
Koyamam
, “
Uniaxial Elongational Viscosity of Various Molten Polymer Composites
,“ in
Polymer Composites
,
1999
, (
20
).
9.
Lee
,
S.H.
,
S.Y.
Kim
und
J.R.
Youn
, “
Rheological Behavior and Theoretical Modeling of Uniaxial Elongational Flow Properties of Polypropylene/Layered Silicate Nanocomposites
“ in
Polymer Composites
,
2009
,
1426
1436
.
10.
DIN Deutsches Institut für Normung e.V. DIN EN ISO 6603-2:2002-04, “Bestimmung des Durchstoßverhaltens von festen Kunststoffen, Teil 2: Instrumentierter Schlagversuch,“
Berlin
:
Beuth Verlag GmbH
,
2002
.
11.
Baumgaertel
,
M.
and
H.H.
Winter
. “
Determination of Discrete Relaxation and Retardation Time Spectra From Dynamic Mechanical Data
,” in
Rheologica Acta
,
1989
.
12.
Bernnat
,
A.
, “Polymer Melt Rheology and the Rheotens Test“
Dissertation
.
Universität Stuttgart. Institut für Kunststofftechnologie
.
Stuttgart
,
2001
.