Adding fillers to polymers can lead to highly functional materials and thereby to properties like electrical conductivity that are not achievable by polymers themselves. But higher amounts of fillers cause an increase in viscosity and thus a change in flow behavior which in turn induces difficulties in plastic processing. Above a certain value (percolation threshold) there is a flow restriction which has to be overcome by a higher pressure in plastic processing. Besides the amount of filler the flow behavior of highly filled polymers depends on the filler itself and its particle shape. Especially the aspect ratio plays an important role. Another important factor is the combination of the polymer and the filler and whether there are any interactions between each other. By differing the amorphous phase of polymers into a rigid amorphous and a mobile amorphous fraction, predictions about interactions are possible. The objective is the generation of such a flow restriction and the combined investigation of a polymer-particle-interaction. Polylactide (PLA) was used as matrix whereas copper was used as filler material in different amounts up to 30 vol.-%. Copper was chosen because it is available in similar sizes in spherical, platelet or fibrous shape regarding the influence of the aspect ratio. Rheological investigations were done on a plate-plate rheometer while the interactions were investigated using differential scanning calorimetry. The results show that a higher aspect ratio leads to a faster increase in viscosity achieving the rheological threshold. As a result of the caloric investigations the highly filled plastics show only a minor interaction between polymer chains and filler surface. This leads to the conclusion that the change in flow behavior is mainly caused by a direct interaction between the particles.

1.
Bonten
,
C.
Kunststofftechnik. Einfiihrung und Grundlagen.
2nd edition.
Munich
:
Hanser
,
2016
. ISBN 978-3-446-44674-8.
2.
Mezger
,
T.
Das Rheologie Handbuch. Fiir Anwender von Rotations-und Oszillations-Rheometern.
5th edition.
Hanover
:
Vincentz
,
2016
. Farbe und Lack Bibliothek. ISBN 9783866306332.
3.
Musialek
,
M.
,
K.
Geiger
und
C.
Bonten
. Modellierung und Vorhersage des FlieBverhaltens hochgefillter Kunststoffe. In:
C.
Bonten
und
M.
Kreutzbruck
, ed.
24. Stuttgarter Kunststoffkolloquium. 25th -26th Februar 2015 in Stuttgart;
Stuttgart
:
IKT Univ. Stuttgart
,
2015
. ISBN 978-3-00-048562-6.
4.
Kataoka
,
T.
,
T.
Kitano
,
M.
Sasahara
und
K.
Nishijima
.
Viscosity of particle filled polymer melts
. In:
Rheologica Acta
,
1978
,
17
(
2
),
149
155
. Doi:
5.
Markov
,
A.V.
Rheologisches Verhalten hochgefillter Kunststoffe. Einfluss der Fillstoffe
. In:
Materialwissenschaft und Werkstofftechnik
,
2008
,
39
(
3
),
227
233
. Doi:
6.
Klonos
,
P.
und
P.
Pissis
.
Effects of interfacial interactions and of crystallization on rigid amorphous fraction and molecular dynamics in polylactide/silica nanocomposites. A methodological approach
. In:
Polymer
,
2017
,
112
,
228
243
. Doi:
7.
Rueda
,
M.M.
,
M.-C.
Auscher
,
R.
Fulchiron
,
T.
Perie
,
G.
Martin
,
P.
Sonntag
und
P.
Cassagnau
.
Rheology and applications of highly filled polymers. A review of current understanding
. In:
Progress in Polymer Science
,
2017
,
66
,
22
53
. Doi:
8.
Wunderlich
,
B.
Precision heat capacity measurements for the characterization of two-phase polymers
. In:
Journal of Thermal Analysis
,
1985
,
30
(
6
),
1217
1221
. Doi:
9.
Suzuki
,
H.
,
J.
Grebowicz
und
B.
Wunderlich
.
Heat capacity of semicrystalline, linear poly(oxymethylene) and poly(oxyethylene
). In:
Die Makromolekulare Chemie
,
1985
,
186
(
5
),
1109
1119
. Doi:
10.
Alsleben
,
M.
und
C.
Schick
.
The melting of polymers - a three-phase approach
. In:
Thermochimica Acta
,
1994
,
238
,
203
227
. Doi:
11.
Wunderlich
,
B.
Reversible crystallization and the rigid-amorphous phase in semicrystalline macromolecules
. In:
Progress in Polymer Science
,
2003
,
28
(
3
),
383
450
. Doi:
12.
Zia
,
Q.
,
D.
Mileva
und
R.
Androsch
.
Rigid Amorphous Fraction in Isotactic Polypropylene
. In:
Macromolecules
,
2008
,
41
(
21
),
8095
8102
. Doi:
13.
Jancar
,
J.
,
E.
Fekete
,
P.R.
Hornsby
,
J.
Jancar
,
B.
Pukanszky
und
R.N.
Rothon
, ed.
Mineral Fillers in Thermoplastics J. Raw Materials and Processing.
Berlin
:
Springer
,
1999
. Advances in polymer science. l39. ISBN 3540646213.
14.
Zhang
,
Y.
,
B.
Meng
,
L.
Chen
,
J. Tao und Z.
Wu
.
Properties and structures of polylactide filled with poly(E-caprolactone)-coated calcium carbonate
. In:
Journal of Applied Polymer Science
,
2012
,
125
(
2
),
952
958
. Doi:
15.
Ma
,
Q.
,
G.
Georgiev
und
P.
Cebe
.
Constraints in semicrystalline polymers. Using quasi-isothermal analysis to investigate the mechanisms of formation and loss of the rigid amorphous fraction
. In:
Polymer
,
2011
,
52
(
20
),
4562
4570
. Doi:
16.
Wurm
,
A.
,
M.
Ismail
,
B.
Kretzschmar
,
D.
Pospiech
und
C.
Schick
.
Retarded Crystallization in Polyamide/Layered Silicates Nanocomposites caused by an Immobilized Interphase
. In:
Macromolecules
,
2010
,
43
(
3
),
480
487
. Doi:
17.
Kalyon
,
D.M.
und
S.
Aktaş
.
Factors affecting the rheology and processability of highly filled suspensions
. In:
Annual review of chemical and biomolecular engineering
,
2014
,
5
,
229
254
. Doi:
18.
Moraczewski
,
K.
Effect of metallization time on thermal stability of copper-plated polylactide
. In:
Journal of Thermal Analysis and Calorimetry
,
2017
,
129
(
3
),
1697
1703
. Doi:
19.
Righetti
,
M.C.
Amorphous Fractions of Poly(lactic acid
). In:
Advances in Polymer Science
,
2018
,
2018
(
279
),
195
234
. Doi: