Demand for fossil fuel of coal, petroleum and natural gas has always increased from year to year. Therefore, the development, expansion and utilization of biomass from non no-fossil fuels need be carried out. Efforts to explore, develop, process and utilize biomass from non-fossil fuels, which is the cultivation of microalgae containing triglycerides that can be extracted into methyl esters (biodiesel). The sample extraction process is carried out in 5 stages, such as harvesting, weaving, methylation, extraction, and washing. The amount and ratio of saturated and unsaturated fatty acid is a key that determines the suitability of microalgae as a biofuel feedstock. This paper aims to compare the potential microalgae in Indonesia with the other countries as feedstock for biofuel production. The fatty acid composition of Synechococcus sp. HS-9, Spirulina platensis, Glagah consortium microalgae, and Nostoc HS-20 from Indonesia could be a promising feedstock for biofuel production. The quantity of fatty acid microalgae from Indonesia higher than the other countries.

1.
Suharto
,
Bioteknologi dalam Bahan Bakar Nonfosil
1ed.
2017
,
Yogyakarta
:
Penerbit Andi Yogyakarta
.
2.
Saadudin
,
E.
,
S.R.
Fitri
, and
V.J.
Wargadalam
,
Karakteristik asam lemak mikroalga untuk produksi biodiesel.
Ketenagalistrikan dan Energi Terbarukan
,
2016
.
10
(
2
): p.
131
140
.
3.
Selvan
,
B.K.
, et al,
Biodiesel production from marine cyanobacteria cultured in plate and tubular photobioreactors.
2013
.
4.
Shuba
,
E.S.
and
D.
Kifle
,
Microalgae to biofuels:‘Promising’alternative and renewable energy, review
.
Renewable and Sustainable Energy Reviews
,
2018
.
81
: p.
743
755
.
5.
Satyanarayana
,
K.
,
A.
Mariano
, and
J.
Vargas
,
A review on microalgae, a versatile source for sustainable energy and materials
.
International Journal of energy research
,
2011
.
35
(
4
): p.
291
311
.
6.
Modiri
,
S.
, et al,
Lipid production and mixotrophic growth features of cyanobacterial strains isolated from various aquatic sites
.
Microbiology
,
2015
.
161
(
3
): p.
662
673
.
7.
Sajjadi
,
B.
, et al,
Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition
.
Renewable and Sustainable Energy Reviews
,
2018
.
97
: p.
200
232
.
8.
Rajvanshi
,
S.
and
M.P.
Sharma
,
Micro algae: a potential source of biodiesel
.
Journal of Sustainable Bioenergy Systems
,
2012
.
2
(
3
): p.
49
.
9.
Pankratz
,
S.
, et al,
Algae production platforms for Canada’s northern climate
.
Renewable and Sustainable Energy Reviews
,
2017
.
80
: p.
109
120
.
10.
Sirajunnisa
,
A.R.
and
D.
Surendhiran
,
Algae–A quintessential and positive resource of bioethanol production: A comprehensive review
.
Renewable and sustainable energy reviews
,
2016
.
66
: p.
248
267
.
11.
Bula
,
A.
,
CFD SIMULATION OF MULTIPHASE FLOW IN AN AIRLIFT COLUMN PHOTOBIOREACTOR
.
2014
.
12.
Calvo
,
F.
, et al,
CFD simulation of multiphase (liquid–solid–gas) flow in an airlift column photobioreactor
.
Acta Mechanica
,
2017
.
228
(
7
): p.
2413
2427
.
13.
Nining Betawati Prihantini
,
S.H.
,
Wellyzar
Sjamsuridzal
,
Akira
Yokota
,
Nasruddin
. Fatty Acid Characterization of Indigenous Cyanobacterial Strains Isolated from Five Hot Springs in Indonesia. in
The 3rd International Tropical Energy Conference
.
2018
.
Bali
:
E3S Proceeding
. (In Press).
14.
Xue
,
Z.
, et al,
Edible oil production from microalgae: A review
.
European Journal of Lipid Science and Technology
,
2018
: p.
1700428
.
15.
Hartati
,
R.
,
H.
Endrawati
, and
J.
Mamuaja
,
Fatty acid composition of marine microalgae in Indonesia
.
Journal of Tropical Biology & Conservation (JTBC)
,
2013
.
10
.
16.
Suyono
,
E.A.
,
N.S.
Fahrunnida
, and
I.V.
Utama
,
Identification of microalgae species and lipid profiling of Glagah consortium for biodiesel development from local marine resource
.
ARPN J. Eng. Appl. Sci
,
2016
.
11
(
16
): p.
9970
9973
.
17.
Saritha
S
, K.K.J.,
Prashob Peter
K J
,
S M
Nair
,
In Vitro Antibacterial Screening of Fatty Acid Fractions from Three Different Microalgae
.
International Journal of Pharmacognosy and Phytochemical Research
,
2017
.
18.
Abba
,
Z.
, et al,
Fatty Acids Composition of Microalga Botryococcus Sp. Cultured in Synthetic Medium
.
Journal of Science and Technology
,
2017
.
9
(
4
).
19.
Jiménez-Valera
,
S.
and
M. del Pilar
Sánchez-Saavedra
,
Growth and fatty acid profiles of microalgae species isolated from the Baja California Peninsula, México
.
Latin American Journal of Aquatic Research
,
2016
.
44
(
4
): p.
689
702
.
20.
Pereira
,
H.
, et al,
Isolation and fatty acid profile of selected microalgae strains from the Red Sea for biofuel production
.
Energies
,
2013
.
6
(
6
): p.
2773
2783
.
21.
Ohse
,
S.
, et al,
Lipid content and fatty acid profiles in ten species of microalgae
.
IDESIA (Chile)
,
2014
.
2015
.
22.
Lin
,
Y.
, et al,
Isolation of a novel strain of Monoraphidium sp. and characterization of its potential for α-linolenic acid and biodiesel production
.
Bioresource technology
,
2018
.
267
: p.
466
472
.
23.
Rinna
,
F.
, et al,
Wastewater treatment by microalgae can generate high quality biodiesel feedstock
.
Journal of water process engineering
,
2017
.
18
: p.
144
149
.
24.
BPPT
, Outlook Energi Indonesia 2018: Energi Berkelanjutan untuk Transportasi Darat.
2018
,
Jakarta
:
Pusat Pengkajian Industri Proses dan Energi (PPIPE
).
25.
Widodo
,
L.
,
I.M.
Ihsan
, and
A.D.
Santoso
,
Profitabilitas Biodiesel dari Biomasa Mikroalga
.
Jurnal Teknologi Lingkungan
,
2018
.
19
(
1
): p.
117
124
.
26.
Sistiafi
,
A.
and
D.
Putri
. Biodiesel synthesis from nannochloropsis oculata and chlorella vulgaris through transesterification process using NaOH/zeolite heterogeneous catalyst. in
IOP Conference Series: Earth and Environmental Science
.
2018
.
IOP Publishing
.
27.
Pradana
,
Y.S.
, et al,
Oil Algae Extraction of Selected Microalgae Species Grown in Monoculture and Mixed Cultures for Biodiesel Production
.
Energy Procedia
,
2017
.
105
: p.
277
282
.
28.
Rusdiani
,
R.R.
,
R.
Boedisantoso
, and
M.
Hanif
,
Optimalisasi Teknologi Fotobioreaktor Mikroalga sebagai Dasar Perencanaan Strategi Mitigasi Gas CO2
.
Jurnal Teknik ITS
,
2016
.
5
(
2
): p.
F188
F192
.
29.
Amini
,
S.
and
R.
Susilowati
,
Produksi Biodiesel dariMikroalgaBotryococcusbraunii
.
Squalen
,
2010
.
5
(
1
): p.
23
30
.
30.
Amalia
,
B.
,
Optimasi Ekstraksi Minyak Mikroalga Jenis Chlorella vulgaris
.
31.
Novery
,
K.
,
E.
Sutrisno
, and
M.
Hanif
,
Optimasi Proses Likuifaksi Mikroalga Spirulina SP. untuk Produksi Bahan Bakar Cair Menggunakan Metode Respon Permukaan: Pengaruh Tekanan Awal dan Konsentrasi Katalis
.
Jurnal Teknik Lingkungan
,
2016
.
5
(
2
): p.
1
12
.
32.
Kristanti
,
W.A.
,
S.
Satwiko
, and
N.
Fachrizal
.
EKSTRAKSI MINYAK NABATI DARI MIKROALGA SCENEDESSMUS SP. MENGGUNAKAN GELOMBANG ULTRASONIK
. in
PROSIDING SEMINAR NASIONAL FISIKA (E-JOURNAL).
2012
.
33.
Mansur
,
D.
, et al Lipid extraction of wet BLT0404 microalgae for biofuel application. in
AIP Conference Proceedings
.
2017
.
AIP Publishing
.
34.
Nurachman
,
Z.
, et al,
Oil productivity of the tropical marine diatom Thalassiosira sp
.
Bioresource technology
,
2012
.
108
: p.
240
244
.
35.
Khotimah
,
K.
,
Membangun Ketahanan Energi Pendukung Pertahanan Maritim Melalui Pemanfaatan Mikroalga Sebagai Biodiesel Bagi Masyarakat Pesisir
.
Jurnal Pertahanan & Bela Negara
,
2018
.
8
(
1
).
36.
Hadiyanto
,
H.
and
M.A.
Nur
,
Mikroalga: Sumber Pangan & Energi Masa Depan
,
UNDIP Press
.
This content is only available via PDF.