DNA microarray has the characteristics of the higher dimension and redundancy, they bring into a series of the difficulties for the gene feature clasiffication. Pertaining to the two classical microarray datasets (cancer of colon set and leukemia set), firstly, the preprocess has been taken by the normalizing and the redundant data have been withdrawn; secondly, Principal Component Analysis method has been adopted to reduce the dimension of datasets and the information gene sets have been obtained; Finally, multiple classifiers have been utilized for the simulating tests, such as LS-SVM, SVM, BP, RBF, etc. They demonstrate that LS-SVM classifier has the higher accuracy for classification and show the approached method can make the correct judgment for classifying the feature of gene dataset, and provide the verifying reliance for clinical therapy further.

1.
U.
Alon
,
N.
Barkai
,
D.A.
Notterrman
,
K.
Gish
,
S.
Ybarra
,
D.
Mack
and
A.J.
Levine
,
Proc. Natl. Acad. Sci. USA
,
96
, pp.
6745
6750
(
1999
).
2.
T.S.
Furey
, et al,
Bioinformatics
,
16
(
10
), pp.
906
914
(
2000
).
3.
T. R.
Golub
,
D. K.
Slonim
,
P.
Tamayo
, et al,
Science
, 1999,
286
, pp.
531
537
(
1999
).
4.
I.
Guyon
,
J.
Weston
,
S.
Barnhill
, et al,
Machine Learning
,
46
, pp.
389
422
(
2002
).
5.
S.
Chiaretti
,
Li
Xiaochun
,
R.
Gentleman
,
A.
Vitale
, et al,
Blood
,
103
(
7
), pp.
2771
2778
(
2004
).
6.
Sun
Zhifu
,
Yang
ping
.
Cancer Composites, Biomarkers & Prevention
,
15
(
11
), pp.
2063
2068
(
2006
).
7.
A.V. C.
Devi
,
D.
Devaraj
,
M.
Venkatesulu
,
Procedia Computer Science
,
47
, pp.
13
21
(
2015
).
8.
Aiguo
Wang
,
Ning
An
,
Guilin
Chen
,
Lian
Li
,
G.
Alterovitz
,
Computers in Biology and Medicine
,
62
, pp.
14
24
(
2015
).
9.
F. V.
Sharbaf
,
S.
Mosafer
,
M.H.
Moattar
,
Genomics
,
107
, pp
231
238
(
2016
).
10.
S.
Khan
,
I.
Naseem
,
R.
Togneri
,
M.
Bennamoun
,
Circuits Syst. Signal Process
,
36
, pp
1639
1653
(
2017
).
11.
Yawen
Xiao
,
Jun
Wu
,
Zongli
Lin
,
Xiaodong
Zhao
,
Computer Methods and Programs in Biomedicine
,
153
, pp.
1
9
(
2018
).
12.
Yingxin
Li
,
Quanjin
Liu
,
Xiaogang
Ruan
,
Chinese Journal of Biomedical Engineering
,
24
(
2
), pp.
240
244
(
2005
) (in Chinese).
13.
Yu
Ma
,
Li
Chen
,
Liqi
Ou
,
Computer Engineering and Application
,
5
, pp.
176
178
(
2006
) (in Chinese)
14.
Li
Han
,
Yunsong
Qi
,
Jun
Wang
,
Science Technology and Engineering
,
9
(
1
), pp.
152
155
(
2009
)(in Chinese)
15.
Qinping
Zhu
,
Xiaohan
Hu
,
Yunsong
Qi
,
Science Technology and Engineering
,
10
(
27
), pp.
6675
(
2010
) (in Chinese).
16.
Quanzhu
Yao
,
Jie
Cai
,
Computer Engineering and Application
,
46
(
1
), pp.
134
136
, 229(
2010
) (in Chinese).
17.
Gang
Sun
,
Jing
Zhang
,
Journal of Chinese Computer Systems
,
36
(
6
), pp.
1209
1213
(
2015
) (in Chinese).
18.
Qin
Yang
,
Hongwei
Dong
,
Yanna
Xue
,
Transducer and Microsystem Technologies
,
35
(
5
), pp.
146
148
, 153(
2016
) (in Chinese).
19.
L.
Torgo
,
Hongcheng
Li
,
Daolun
Chen
,
Liming
Wu
,
Data Mining and R Language
, (
Mechanical Industry Press
,
Beijing
,
2016
), pp.
162
174
(in Chinese).