Hyperlipidemia is a disease of fat metabolism or abnormal operation in healthcare, characterized by one or more of high total cholesterol (TC), high triglycerides (TG), high low-density lipoprotein cholesterol (LDL-C) and low high-density lipoprotein cholesterol (HDL-C) in blood. Hyperlipidemia is prone to cardiovascular and cerebrovascular diseases, obesity, diabetes, hyperinsulinemia and other diseases, posing a serious threat to human health. However, the commonly used chemical synthetic lipid-lowering drugs have obvious clinical effects, but the effect is biased to single and adverse reactions, such as adverse reactions of the nervous system, gastrointestinal reactions and liver damage. In recent years, a large number of literatures had reported that various medicinal plants or their active ingredients had lipid-lowering effects. Thus, finding safe and effective lipid-lowering components from natural medicines has a broad development prospects in research. In this review, I tried to explore the information of several active components of lipid-lowering plants and their lipid-lowering mechanisms, which may help future researchers develop new natural lipid-lowering drugs to treat hyperlipidemia.

1.
World Health Organization (WHO)
[Accessed: April 19, 2013] ; Fact Sheet No 134. 2008 Dec;http://www.Who.int/mediacentre/factsheets/fs134/en/
2.
Pan
S Y
,
Litscher
G
,
Gao
S H
, et al 
Historical perspective of traditional indigenous medical practices: the current renaissance and conservation of herbal resources [J]
.
Evidence-Based Complementary and Alternative Medicine
,
2014
, 2014.
3.
Sahoo
N
,
Manchikanti
P
,
Dey
S.
Herbal drugs: standards and regulation [J]
.
Fitoterapia
,
2010
,
81
(
6
):
462
471
.
4.
Wang
M Y
,
West
B J
, and
Jensen
C J
, et al 
Morinda citrifolia (Noni): a literature review and recent advances in Noni research [J]
.
Acta Pharmacologica Sinica
,
2002
,
23
(
12
):
1127
1141
.
5.
Herbal medicine: biomolecular and clinical aspects [M].
CRC Press
,
2011
.
6.
Seo
K H
,
Bartley
G E
,
Tam
C
, et al 
Chardonnay grape seed flour ameliorates hepatic steatosis and insulin resistance via altered hepatic gene expression for oxidative stress, inflammation, and lipid and ceramide synthesis in diet-induced obese mice[J]
.
PloS one
,
2016
,
11
(
12
):
e0167680
.
7.
Kim
H
,
Bartley
G E
,
Arvik
T
, et al 
Dietary supplementation of chardonnay grape seed flour reduces plasma cholesterol concentration, hepatic steatosis, and abdominal fat content in high-fat diet-induced obese hamsters[J]
.
Journal of agricultural and food chemistry
,
2014
,
62
(
8
),
1919
1925
.
8.
Del Bas
J M
,
Fernández-Larrea
J
,
Blay
M
, et al 
Grape seed procyanidins improve atherosclerotic risk index and induce liver CYP7A1 and SHP expression in healthy rats[J]
.
The FASEB journal
,
2005
,
19
(
3
):
479
481
.
9.
Seo
Y S
,
Kang
O H
,
Kim
S B
, et al 
Quercetin prevents adipogenesis by regulation of transcriptional factors and lipases in OP9 cells [J]
.
International journal of molecular medicine
,
2015
,
35
(
6
):
1779
1785
.
10.
Rubatzky
V E
,
Yamaguchi
M.
World vegetables: principles, production, and nutritive values [M]
.
Springer Science & Business Media
,
2012
.
11.
Bhattacharjee
S K.
Handbook of medicinal plants [M]
.
Aavishkar Publishers
,
2000
.
12.
Yao
Y
,
Sang
W
,
Zhou
M
, et al 
Phenolic composition and antioxidant activities of 11 celery cultivars[J]
.
Journal of Food Science
,
2010
,
75
(
1
):
C9
C13
.
13.
Al-Sa’aidi
J A A
,
Alrodhan
M N A
,
Ismael
A K.
Antioxidant activity of n-butanol extract of celery (Apium graveolens) seed in streptozotocin-induced diabetic male rats [J]
.
Research in Pharmaceutical Biotechnology
,
2012
,
4
(
2
):
24
29
.
14.
De Melo
C L
,
Queiroz
M G R
,
Arruda Filho
A C V
, et al 
Betulinic acid, a natural pentacyclic triterpenoid, prevents abdominal fat accumulation in mice fed a high-fat diet [J]
.
Journal of agricultural and food chemistry
,
2009
,
57
(
19
):
8776
8781
.
15.
Huang
J
,
Wang
Y
,
Xie
Z
, et al 
The anti-obesity effects of green tea in human intervention and basic molecular studies[J]
.
European journal of clinical nutrition
,
2014
,
68
(
10
):
1075
.
16.
Yang
C S
,
Zhang
J
,
Zhang
L
, et al 
Mechanisms of body weight reduction and metabolic syndrome alleviation by tea [J]
.
Molecular nutrition & food research
,
2016
,
60
(
1
):
160
174
.
17.
Koo
S I
,
Noh
S K.
Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect [J]
.
The Journal of nutritional biochemistry
,
2007
,
18
(
3
):
179
183
.
18.
Borgström
B.
Importance of phospholipids, pancreatic phospholipase A2, and fatty acid for the digestion of dietary fat: in vitro experiments with the porcine enzymes [J]
.
Gastroenterology
,
1980
,
78
(
5
):
954
962
.
19.
Shishikura
Y
,
Khokhar
S
,
Murray
B S.
Effects of tea polyphenols on emulsification of olive oil in a small intestine model system [J]
.
Journal of agricultural and food chemistry
,
2006
,
54
(
5
):
1906
1913
.
20.
Grove
K A
,
Sae-Tan
S
,
Kennett
M J
, et al 
(-) - Epigallocatechin-3-gallate Inhibits Pancreatic Lipase and Reduces Body Weight Gain in High Fat-Fed Obese Mice [J]
.
Obesity
,
2012
,
20
(
11
):
2311
2313
.
21.
Armand
M
,
Pasquier
B
,
André
M
, et al 
Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract–[J]
.
The American journal of clinical nutrition
,
1999
,
70
(
6
):
1096
1106
.
22.
Wang
S
,
Noh
S K
,
Koo
S I.
Green tea catechins inhibit pancreatic phospholipase A2 and intestinal absorption of lipids in ovariectomized rats [J]
.
The Journal of nutritional biochemistry
,
2006
,
17
(
7
):
492
498
.
23.
Feingold
K R
,
Grunfeld
C.
Introduction to lipids and lipoproteins [M]
//
Endotext [Internet]
. MDText. Com, Inc.,
2018
.
24.
Smith
M.
Therapeutic applications of fenugreek [J]
.
Alternative Medicine Review
,
2003
,
8
(
1
):
20
27
.
25.
Vinayagam
R
,
Xu
B.
Antidiabetic properties of dietary flavonoids: a cellular mechanism review [J]
.
Nutrition & metabolism
,
2015
,
12
(
1
):
60
.
26.
Wakil
S J
,
Abu-Elheiga
L A.
Fatty acid metabolism: target for metabolic syndrome [J]
.
Journal of lipid research
,
2009
,
50
(
Supplement
):
S138
S143
.
27.
Kumar
P
,
Bhandari
U
,
Jamadagni
S.
Fenugreek seed extract inhibit fat accumulation and ameliorates dyslipidemia in high fat diet-induced obese rats [J]
.
BioMed research international
,
2014
, 2014.
28.
Hamden
K
,
Jaouadi
B
,
Carreau
S
, et al 
Inhibitory effect of fenugreek galactomannan on digestive enzymes related to diabetes, hyperlipidemia, and liver-kidney dysfunctions [J]
.
Biotechnology and Bioprocess Engineering
,
2010
,
15
(
3
):
407
413
.
29.
Alizadeh-Navaei
R
,
Roozbeh
F
,
Saravi
M
, et al 
Investigation of the effect of ginger on the lipid levels. A double blind controlled clinical trial[J]
.
Saudi Med J
,
2008
,
29
(
9
):
1280
4
.
30.
Ahmida
M H
,
Abuzogaya
M H.
The effects of oral administration of green tea and ginger extracts on serum and hepatic lipid content in rats fed a hyperlipidemic diet[J]
.
Journal of Applied Sciences Research
,
2009
(October):
1709
1713
.
31.
Elshater
A E
,
Salman
M M A
,
Moussa
M M A.
Effect of ginger extract consumption on levels of blood glucose, lipid profile and kidney functions in alloxan induced-diabetic rats [J]
.
Egyptian Academic Journal of Biological Sciences
,
2009
,
2
(
1
):
153
162
.
32.
Rong
X
,
Peng
G
,
Suzuki
T
, et al 
A 35-day gavage safety assessment of ginger in rats [J]
.
Regulatory Toxicology and Pharmacology
,
2009
,
54
(
2
):
118
123
.
33.
Bhandari
U
,
Pillai
K K.
Effect of ethanolic extract of Zingiber officinale on dyslipidaemia in diabetic rats [J]
.
Journal of ethnopharmacology
,
2005
,
97
(
2
):
227
230
.
34.
Ansari
M N
,
Bhandari
U
,
Pillai
K K.
Ethanolic Zingiber officinale R. extract pretreatment alleviates isoproterenol-induced oxidative myocardial necrosis in rats [J]
.
2006
.
35.
Ahmed
R S
,
Suke
S G
,
Seth
V
, et al 
Protective effects of dietary ginger (Zingiber officinales Rosc.) on lindane-induced oxidative stress in rats[J]
.
Phytotherapy Research
,
2008
,
22
(
7
):
902
906
.
36.
Thomson
M
,
Al-Qattan
K K
,
Al-Sawan
S M
, et al 
The use of ginger (Zingiber officinale Rosc.) as a potential anti-inflammatory and antithrombotic agent[J]
.
Prostaglandins, leukotrienes and essential fatty acids
,
2002
,
67
(
6
):
475
478
.
37.
Fuhrman
B
,
Rosenblat
M
,
Hayek
T
, et al 
Ginger extract consumption reduces plasma cholesterol, inhibits LDL oxidation and attenuates development of atherosclerosis in atherosclerotic, apolipoprotein E-deficient mice[J]
.
The Journal of nutrition
,
2000
,
130
(
5
):
1124
1131
.
38.
Verma
S K
,
Singh
M
,
Jain
P
, et al 
Protective effect of ginger, Zingiber officinale Rosc on experimental atherosclerosis in rabbits [J]
.
2004.
39.
Gebhardt
R.
Antioxidative and protective properties of extracts from leaves of the artichoke (Cynara scolymus L.) against hydroperoxide-induced oxidative stress in cultured rat hepatocytes [J]
.
Toxicology and applied pharmacology
,
1997
,
144
(
2
):
279
286
.
40.
Kraft
K.
Artichoke leaf extract—recent findings reflecting effects on lipid metabolism, liver and gastrointestinal tracts [J]
.
Phytomedicine
,
1997
,
4
(
4
):
369
378
.
41.
Manach
C
,
Scalbert
A
,
Morand
C
, et al 
Polyphenols: food sources and bioavailability [J]
.
The American journal of clinical nutrition
,
2004
,
79
(
5
):
727
747
.
42.
Salem
M B
,
Kolsi
R B A
,
Dhouibi
R
, et al 
Protective effects of Cynara scolymus leaves extract on metabolic disorders and oxidative stress in alloxan-diabetic rats[J]
.
BMC complementary and alternative medicine
,
2017
,
17
(
1
):
328
.
43.
Amresh
G
,
Zeashan
H
,
Gupta
R J
, et al 
Gastroprotective effects of ethanolic extract from Cissampelos pareira in experimental animals [J]
.
Journal of natural medicines
,
2007
,
61
(
3
):
323
328
.
44.
Amresh
G
,
Rao
C V
,
Singh
P N.
Antioxidant activity of Cissampelos pareira on benzo (a) pyrene-induced mucosal injury in mice[J]
.
Nutrition Research
,
2007
,
27
(
10
):
625
632
.
45.
Salem
M B
,
Affes
H
,
Ksouda
K
, et al 
Pharmacological studies of artichoke leaf extract and their health benefits [J]
.
Plant foods for human nutrition
,
2015
,
70
(
4
):
441
453
.
46.
Honek
A
,
Martinkova
Z
,
Saska
P
, et al 
Role of post-dispersal seed and seedling predation in establishment of dandelion (Taraxacum agg.) plants[J]
.
Agriculture, ecosystems & environment
,
2009
,
134
(
1-2
):
126
135
.
47.
Kim
M Y
,
Cheong
S H
,
Kim
M H
, et al 
Leafy vegetable mix supplementation improves lipid profiles and antioxidant status in C57BL/6J mice fed a high fat and high cholesterol diet [J]
.
Journal of medicinal food
,
2009
,
12
(
4
):
877
884
.
48.
Del Rio
D
,
Stewart
A J
,
Pellegrini
N.
A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress[J]
.
Nutrition, metabolism and cardiovascular diseases
,
2005
,
15
(
4
):
316
328
.
49.
Robertson
R P
,
Zhou
H
,
Zhang
T
, et al 
Chronic oxidative stress as a mechanism for glucose toxicity of the beta cell in type 2 diabetes [J]
.
Cell biochemistry and biophysics
,
2007
,
48
(
2-3
):
139
146
.
50.
Robertson
R P
,
Harmon
J
,
Tran
P O T
, et al 
β-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes [J]
.
Diabetes
,
2004
,
53
(
suppl 1
):
S119
S124
.
51.
Davaatseren
M
,
Hur
H J
,
Yang
H J
, et al 
Taraxacum official (dandelion) leaf extract alleviates high-fat diet-induced nonalcoholic fatty liver[J]
.
Food and chemical toxicology
,
2013
,
58
:
30
36
.
52.
Boden
G
,
Shulman
G I.
Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and β-cell dysfunction [J]
.
European journal of clinical investigation
,
2002
,
32
:
14
23
.
53.
González-Castejón
M
,
Visioli
F
,
Rodriguez-Casado
A.
Diverse biological activities of dandelion [J]
.
Nutrition reviews
,
2012
,
70
(
9
):
534
547
.
54.
Czinner
E
,
Hagymasi
K
,
Blazovics
A
, et al 
The in vitro effect of Helichrysi flos on microsomal lipid peroxidation[J]
.
Journal of ethnopharmacology
,
2001
,
77
(
1
):
31
35
.
55.
Wirngo
F E
,
Lambert
M N
,
Jeppesen
P B.
The physiological effects of dandelion (Taraxacum officinale) in type 2 diabetes[J]
.
The review of diabetic studies: RDS
,
2016
,
13
(
2-3
):
113
.
56.
Ayyanar
M
,
Subash-Babu
P.
Syzygium cumini (L.) Skeels: A review of its phytochemical constituents and traditional uses[J]
.
Asian Pacific journal of tropical biomedicine
,
2012
,
2
(
3
):
240
246
.
57.
Aqil
F
,
Gupta
A
,
Munagala
R
, et al 
Antioxidant and antiproliferative activities of anthocyanin/ellagitannin-enriched extracts from Syzygium cumini L.(Jamun, the Indian Blackberry)[J]
.
Nutrition and cancer
,
2012
,
64
(
3
):
428
438
.
58.
Li
L
,
Adams
L S
,
Chen
S
, et al 
Eugenia jambolana Lam. berry extract inhibits growth and induces apoptosis of human breast cancer but not non-tumorigenic breast cells [J]
.
Journal of agricultural and food chemistry
,
2009
,
57
(
3
):
826
831
.
59.
Sharma
A K
,
Bharti
S
,
Kumar
R
, et al 
Syzygium cumini ameliorates insulin resistance and β-cell dysfunction via modulation of PPARγ, dyslipidemia, oxidative stress, and TNF-α in type 2 diabetic rats[J]
.
Journal of pharmacological sciences
,
2012
,
119
(
3
):
205
213
.
60.
Ravi
K
,
Rajasekaran
S
,
Subramanian
S.
Antihyperlipidemic effect of Eugenia jambolana seed kernel on streptozotocin-induced diabetes in rats [J]
.
Food and Chemical Toxicology
,
2005
,
43
(
9
):
1433
1439
.
61.
Havsteen
B H.
The biochemistry and medical significance of the flavonoids[J]
.
Pharmacology & therapeutics
,
2002
,
96
(
2-3
):
67
202
.
62.
Reaven
G M.
Pathophysiology of insulin resistance in human disease [J]
.
Physiological reviews
,
1995
,
75
(
3
):
473
486
.
63.
Abe
T
,
Takeuchi
K
,
Takahashi
N
, et al 
Rat kidney thromboxane receptor: molecular cloning, signal transduction, and intrarenal expression localization[J]
.
The Journal of clinical investigation
,
1995
,
96
(
2
):
657
664
.
64.
Cawello
W
,
Schweer
H
,
Müller
R
, et al 
Metabolism and pharmacokinetics of prostaglandin E 1 administered by intravenous infusion in human subjects[J]
.
European journal of clinical pharmacology
,
1994
,
46
(
3
):
275
277
.
65.
Thomson
M
,
Al-Qattan
K K
,
Al-Sawan
S M
, et al 
The use of ginger (Zingiber officinale Rosc.) as a potential anti-inflammatory and antithrombotic agent[J]
.
Prostaglandins, leukotrienes and essential fatty acids
,
2002
,
67
(
6
):
475
478
.
66.
Srivastava
K C.
Aqueous extracts of onion, garlic and ginger inhibit platelet aggregation and alter arachidonic acid metabolism [J]
.
Biomedica biochimica acta
,
1984
,
43
(
8-9
):
S335
46
.
67.
Srivastava
K C.
Isolation and effects of some ginger components on platelet aggregation and eicosanoid biosynthesis [J]
.
Prostaglandins, Leukotrienes and Medicine
,
1986
,
25
(
2-3
):
187
198
.
This content is only available via PDF.