The aim of this work is to develop a computational model for investigating the thermal performance of a Solar Parabolic Trough Collector (SPTC) under different climatic zones in Morocco. The governing equations are solved by using a finite difference method and the developed model is validated by comparing our numerical results with existing experimental data and a good agreement is obtained. Simulations under meteorological data of the six climatic regions in Morocco were carried out using water and synthetic oil as Heat Transfer Fluid (HTF). Results show that maximum values of HTF outlet temperature are obtained in zone 5 (Marrakech) and in zone 6 (Errachidia) and minimum values are obtained in zone 4 (Ifrane) and zone 1 (Agadir). The highest thermal efficiency of the SPTC is reached in zone 6 and using synthetic oil as working fluid is suitable compared to water in all climatic zones. The HTF nature and the wheatear conditions have a significant influence on the thermal performance of the SPTC. The proposed computational model is suitable for system design and optimization of the SPTC under different operation conditions.

1.
T.
Kousksou
,
A.
Allouhi
,
M.
Belattar
,
A.
Jamil
,
T.
El Rhafiki
, and
Y.
Zeraouli
,
Energy
84
,
98
105
(
2015
).
2.
International Energy Agency, (Morocco
2014
).
3.
Ministry of Energy, Mines, Water and Environment
, (
Prospective Energy Demand Study for 2030
,
2013
).
4.
M.
Chafie
,
M.
Ben Aissa
,
S.
Bouadila
,
M.
Balghouthi
,
A.
Farhat
and
A.
Guizani
,
Appl. Therm. Engineering
101
,
273
283
(
2016
).
5.
A.
Khouya
and
A.
Draoui
,
Renew. Energy
130
,
796
813
(
2019
).
6.
E.
Venegas-Reyes
,
O. A.
Jaramillo
,
R.
Castrejón-García
,
J. O.
Aguilar
, and
F.
Sosa-Montemayor
,
J. Renewable Sustainable Energy
4
,
053103
(
2012
).
7.
N. Rosado
Hau
and
M. A. Escalante
Soberanis
,
Journal of Renewable and Sustainable Energy
3
,
063108
(
2011
).
8.
S.
Kalogirou
,
Applied Energy
55
,
1
19
(
1996
).
9.
J. a.
Clark
,
Int. J. Heat and Mass Transfer
25
,
1427
1438
(
1982
).
10.
Y.
Marif
,
H.
Benmoussa
,
H.
Bouguettaia
,
M. M.
Belhadj
, and
M.
Zerrouki
,
Energy Convers. Management
85
,
521
529
(
2014
).
11.
V.
Dudley
,
G.
Kolb
,
A.
Mahoney
,
T.
Mancini
,
C.
Mattews
, and
M.
Sloan
, “
Test results: SEGS LS-2 solar collector
,” (
Report of Sandia National Laboratories
,
1994
).
12.
D.
Kumar
and
S.
Kumar
,
Energy Convers. Management
106
,
224
234
(
2015
).
13.
G.
Coccia
,
G.
Latini
, and
M.
Sotte
,
Journal of Renewable and Sustainable Energy
4
,
023110
(
2012
).
14.
M.
Ouagued
,
A.
Khellaf
, and
L.
Loukarfi
,
Energy Convers. Management
75
,
191
201
(
2013
).
15.
J.
Guo
,
X.
Huai
, and
Z.
Liu
,
Appl. Therm. Eng
95
,
357
364
(
2016
).
16.
Agence Marocaine pour l’Efficacité Energétique, (AMEE,
2018
).
17.
J. a.
Duffie
,
W. a.
Beckman
, and
W. M.
Worek
, “Concentrating Collectors,” in
Solar Engineering of Thermal Processes
, (
John Wiley & Sons, Hoboken
,
New Jersey
,
2013
), pp.
323
370
.
18.
N.
Naeeni
and
M.
Yaghoubi
,
Renew. Energy
32
,
1259
1272
(
2007
).
19.
B.
Lamrani
,
A.
Khouya
,
B.
Zeghmati
, and
A.
Draoui
,
Therm. Sci. Eng. Progress
8
,
47
54
(
2018
).
20.
V.
Gnielinski
,
Int. J. Heat and Mass Transfer
63
,
134
140
(
2013
).
This content is only available via PDF.