Polymeric materials are increasingly used in several applications. However, their relatively high flammability presents a danger to people and property. Their use therefore requires that they are made more resistant to both the initiation and propagation of fires.

In the present work we evaluate, by cone calorimeter tests, the efficiency of urea complex of magnesium and vermiculite (urea-vermiculite) as a stand-alone flame retardant in polyurethane (PU) resin and flexible polyvinyl chloride (PVC).

Flexible PVC cone calorimeter tests proceeded without a visible flame following an initial short-lived ignition which degenerated into a bulk pyrolysis, in combination with a surface glowing-combustion event. Urea-vermiculite formed an exfoliated protective barrier layer which allowed thermal stabilisation of the condensed phase. The simultaneous release of halogen species by the PVC and the action of the exfoliated barrier layer prevented the formation of a flammable air–fuel mixture. The addition of urea-vermiculite lowered the peak heat release rate (pHRR) and the total heat released (tHR) significantly.

In PU composites the urea-vermiculite was unable to form a cohesive protective barrier layer. The poor compatibility between the molten PU and the exfoliated flakes also led to the consumption of the underlying PU. Nevertheless, the addition of urea-vermiculite lowered significantly the pHRR of PU composites.

In general, cone calorimetry results revealed that urea-vermiculite allowed thermal stabilization of the condensed phase at high temperatures but had little influence in the vapour phase behaviour. The amount of released urea’s degradation products (non-flammable vapours) was not enough to dilute the flammable vapours’ mixture. Thereby when used with PVC, which releases halogen flame poison, it showed great fire performance.

1.
S.
Pavlidou
and
C. D.
Papaspyrides
,
Progress in Polymer Science
33
(
12
),
1119
(
2008
).
2.
Suprakas Sinha
Ray
and
Masami
Okamoto
,
Progress in Polymer Science
28
(
11
),
1539
(
2003
).
3.
T.
Wada
, (Google Patents,
1973
).
4.
A. B.
Morgan
and
J. W.
Gilman
,
Fire and Materials
37
(
4
),
259
(
2013
).
5.
P. W.
Dufton
, (Smithers Rapra Technology,
1995
).
6.
F.
Laoutid
,
L.
Bonnaud
,
M.
Alexandre
,
J. M.
Lopez-Cuesta
, and
Ph
Dubois
,
Materials Science and Engineering R: Reports
63
(
3
),
100
(
2009
).
7.
G.
Camino
and
L.
Costa
,
Polymer Degradation and Stability
20
(
3–4
),
271
(
1988
).
8.
P.
Kiliaris
and
C.D.
Papaspyrides
,
Progress in Polymer Science
35
,
902
(
2010
).
9.
H.
Horacek
and
R.
Grabner
,
Polymer Degradation and Stability
54
(
2–3
),
205
(
1996
).
10.
D.
Tabuani
,
F.
Bellucci
,
A.
Terenzi
, and
G.
Camino
,
Polymer Degradation and Stability
97
(
12
),
2594
(
2012
).
11.
M.
Berta
,
C.
Lindsay
,
G.
Pans
, and
G.
Camino
,
Polymer Degradation and Stability
91
(
5
),
1179
(
2006
).
12.
A.R.
Horrocks
and
D.
Price
,
Fire Retardant Materials
. (
CRC Press
,
2001
).
13.
Sergei V.
Levchik
and
Edward D.
Weil
,
Polymer International
53
(
11
),
1585
(
2004
).
14.
A. W.
Coaker
,
Journal of Vinyl and Additive Technology
9
(
3
),
108
(
2003
).
15.
Alister F.
Matheson
,
Robin
Charge
, and
Tor
Corneliussen
,
Fire Safety Journal
19
(
1
),
55
(
1992
).
16.
A.
Jimenez
,
J.
Lopez
,
A.
Iannoni
, and
J. M.
Kenny
,
Journal of Applied Polymer Science
81
(
8
),
1881
(
2001
).
17.
Herminio F.
Muiambo
,
Walter W.
Focke
,
Maria
Atanasova
, and
Aida
Benhamida
,
Applied Clay Science
5-106
,
14
(
2015
).
18.
P.
Dunn
and
B. C.
Ennis
,
Journal of Applied Polymer Science
14
(
2
),
355
(
1970
).
19.
K. S.
Annakutty
and
K.
Kishore
,
European Polymer Journal
29
(
10
),
1387
(
1993
).
20.
B.
Schartel
and
T. R.
Hull
,
Fire and Materials
31
(
5
),
327
(
2007
).
21.
Edward D.
Weil
,
Sergei V.
Levchik
, and
P.
Moy
, in
Flame Retardants
, edited by
Edward D.
Weil
and
Sergei V.
Levchik
(
Hanser
,
2009
), pp.
59
.
22.
E. D.
Weil
,
S.
Levchik
, and
P.
Moy
,
Journal of Fire Sciences
24
(
3
),
211
(
2006
).
This content is only available via PDF.