Wavelength-dispersive spectrometers (WDS) are often used in synchrotron and FEL applications where high energy resolution (in the order of eV) is important. Increasing WDS energy resolution requires increasing spatial resolution of the detectors in the dispersion direction. The common approaches are not ideal: using strip detectors loses the 2D position sensitivity (important for, e.g., background estimation) and the high counting rate; using pixel detectors with a small pitch results in complex charge sharing behaviour and typically have a small size. Developing pixel detectors with high aspect ratio and a small pitch in the wavelength dispersive direction would be ideal, however, it would require a substantial ASIC development. We present a new approach, with a novel sensor design using rectangular pixels with a high aspect ratio (between strips and pixels, further called “strixels”), and strixel redistribution to match the square pixel arrays of typical ASICs. This results in a sensor area of 17.4 mm × 77 mm, with a fine pitch of 25 µm in the horizontal direction resulting in 3072 columns and 176 rows. The sensors use ePix100 readout ASICs, leveraging their low noise (43 e−, or 180 eV rms). We present results obtained with a Hammerhead ePix100 camera, showing that the small pitch (25 µm) in the dispersion direction maximizes performance for both high and low photon occupancies, resulting in optimal WDS energy resolution. The low noise level at high photon occupancy allows precise photon counting, while at low occupancy, both the energy and the subpixel position can be reconstructed for every photon, allowing an ultrahigh resolution (in the order of 1 µm) in the dispersion direction and rejection of scattered beam and harmonics. Using strixel sensors with redistribution and flip-chip bonding to standard ePix readout ASICs results in ultrahigh position resolution (∼1 µm) and low noise in WDS applications, leveraging the advantages of hybrid pixel detectors (high production yield, good availability, relatively inexpensive) while minimizing development complexity through sharing the ASIC, hardware, software and DAQ development with other versions of ePix cameras.
Skip Nav Destination
Article navigation
15 January 2019
PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON SYNCHROTRON RADIATION INSTRUMENTATION – SRI2018
11–15 June 2018
Taipei, Taiwan
Research Article|
January 15 2019
Hammerhead, an ultrahigh resolution ePix camera for wavelength-dispersive spectrometers
G. Blaj;
1
SLAC National Accelerator Laboratory
, 2575 Sand Hill Road, Menlo Park, CA 94025, U.S.A
a)Corresponding author: blaj@slac.stanford.edu
Search for other works by this author on:
D. Bhogadi;
D. Bhogadi
1
SLAC National Accelerator Laboratory
, 2575 Sand Hill Road, Menlo Park, CA 94025, U.S.A
Search for other works by this author on:
C. Chang;
C. Chang
1
SLAC National Accelerator Laboratory
, 2575 Sand Hill Road, Menlo Park, CA 94025, U.S.A
Search for other works by this author on:
D. Doering;
D. Doering
1
SLAC National Accelerator Laboratory
, 2575 Sand Hill Road, Menlo Park, CA 94025, U.S.A
Search for other works by this author on:
C. Kenney;
C. Kenney
1
SLAC National Accelerator Laboratory
, 2575 Sand Hill Road, Menlo Park, CA 94025, U.S.A
Search for other works by this author on:
T. Kroll;
T. Kroll
1
SLAC National Accelerator Laboratory
, 2575 Sand Hill Road, Menlo Park, CA 94025, U.S.A
Search for other works by this author on:
J. Segal;
J. Segal
1
SLAC National Accelerator Laboratory
, 2575 Sand Hill Road, Menlo Park, CA 94025, U.S.A
Search for other works by this author on:
D. Sokaras;
D. Sokaras
1
SLAC National Accelerator Laboratory
, 2575 Sand Hill Road, Menlo Park, CA 94025, U.S.A
Search for other works by this author on:
G. Haller
G. Haller
1
SLAC National Accelerator Laboratory
, 2575 Sand Hill Road, Menlo Park, CA 94025, U.S.A
Search for other works by this author on:
a)Corresponding author: blaj@slac.stanford.edu
*
SLAC-PUB-17276
AIP Conf. Proc. 2054, 060037 (2019)
Citation
G. Blaj, D. Bhogadi, C. Chang, D. Doering, C. Kenney, T. Kroll, J. Segal, D. Sokaras, G. Haller; Hammerhead, an ultrahigh resolution ePix camera for wavelength-dispersive spectrometers. AIP Conf. Proc. 15 January 2019; 2054 (1): 060037. https://doi.org/10.1063/1.5084668
Download citation file:
193
Views
Citing articles via
Related Content
Future of ePix detectors for high repetition rate FELs
AIP Conference Proceedings (July 2016)
Design and performance of the ePix camera system
AIP Conference Proceedings (July 2016)
ePix100 camera: Use and applications at LCLS
AIP Conference Proceedings (July 2016)
Performance of ePix10K, a high dynamic range, gain auto-ranging pixel detector for FELs
AIP Conference Proceedings (January 2019)
Helium ion beam induced growth of hammerhead AFM probes
J. Vac. Sci. Technol. B (November 2015)