An overview of the containerless, ultra-high temperature instrumentation on the high energy x-ray beamlines at the Advanced Photon Source is described. It has been implemented for the specific goal of studying crystalline transitions in radioactive materials. The experiments employ laser heating combined with aerodynamic levitation and are designed to recreate severe accident scenarios in the laboratory to benchmark atomic interactions under meltdown and post-meltdown conditions. A hermetically sealed chamber enables control of the atmosphere chemistry surrounding a floating pellet of nuclear material, 2-3 mm in diameter. Optical pyrometery enables instantaneous feedback of the sample surface temperature, and a focused 400 W CO2 laser beam incident on a sample can typically achieve temperatures up to 3500 K. The penetration associated with high energy x-rays (cf. 100 keV) is required to enable transmission diffraction measurements in sealed complex environments. Rapid, high flux x-ray experiments on nuclear materials provides the ability to probe phase transitions and determine reaction pathways upon cooling. Phase identification and the calculation of phase diagrams from different compositions of the model corium system UO2:ZrO2 show the single phase tetragonal structure exists at lower temperatures than previously reported.

1.
P.
Piluso
,
G.
Trillon
, and
C.
Journeau
,
Journal of Nuclear Materials
344
,
259
(
2005
).
2.
J.K.
Fink
,
Journal of Nuclear Materials
279
,
1
(
2000
).
3.
S.
Kohara
,
J.
Akola
,
L.
Patrikeev
,
M.
Ropo
,
K.
Ohara
,
M.
Itou
,
A.
Fujiwara
,
J.
Yahiro
,
J.T.
Okada
,
T.
Ishikawa
,
A.
Mizuno
,
A.
Masuno
,
Y.
Watanabe
, and
T.
Usuki
,
Nature Communications
5
,
5892
(
2014
).
4.
E.
Yakub
,
C.
Ronchi
, and
D.
Staicu
,
The Journal of Chemical Physics
127
,
94508
(
2007
).
5.
S.D.
Günay
,
Ü.
Akdere
, and
Ç.
Taşseven
,
Journal of Molecular Liquids
173
,
124
(
2012
).
6.
M.T.
Hutchings
,
Journal of the Chemical Society, Faraday Transactions 2
83
,
1083
(
1987
).
7.
M.
Guthrie
,
C.J.
Benmore
,
L.B.
Skinner
,
O.L.G.
Alderman
,
J.K.R.
Weber
,
J.B.
Parise
, and
M.
Williamson
,
Journal of Nuclear Materials
479
,
19
(
2016
).
8.
J.K.R.
Weber
,
A.
Tamalonis
,
C.J.
Benmore
,
O.L.G.
Alderman
,
S.
Sendelbach
,
A.
Hebden
, and
M.A.
Williamson
,
Review of Scientific Instruments
87
,
73902
(
2016
).
9.
L.B.
Skinner
,
C.J.
Benmore
,
J.K.R.
Weber
,
M.A.
Williamson
,
A.
Tamalonis
,
A.
Hebden
,
T.
Wiencek
,
O.L.G.
Alderman
,
M.
Guthrie
,
L.
Leibowitz
, and
J.B.
Parise
,
Science (New York, N.Y.
)
346
,
984
(
2014
).
10.
O.L.G.
Alderman
,
C.J.
Benmore
,
J.K.R.
Weber
,
L.B.
Skinner
,
A.J.
Tamalonis
,
S.
Sendelbach
,
A.
Hebden
, and
M.A.
Williamson
,
Scientific Reports
8
,
2434
(
2018
).
11.
C.J.
Benmore
and
J.K.R.
Weber
,
Advances in Physics: X
2
,
717
(
2017
).
12.
J.K.R.W. C.J.
Benmore
,
A.
Tamalonis
,
User Manual for the Aerodynamic Levitator and Laser Heating System on Beamline 6-ID-D
(
2017
).
13.
and K.O. M.J.
Berger
,
J.H.
Hubbell
,
S.M.
Seltzer
,
J.
Chang
,
J.S.
Coursey
,
R.
Sukumar
,
D.S.
Zucker
,
NBSIR
87
(
1998
).
14.
T.B.
Lindemer
and
T.M.
Besmann
,
Journal of Nuclear Materials
130
,
473
(
1985
).
15.
O.L.G.
Alderman
,
C.J.
Benmore
,
J.K.R.
Weber
,
L.B.
Skinner
,
A.J.
Tamalonis
,
S.
Sendelbach
,
A.
Hebden
, and
M.A.
Williamson
,
Applied Physics Letters
110
,
81904
(
2017
).
16.
B.H.
Toby
and
R.B.
Von Dreele
,
Journal of Applied Crystallography
46
,
544
(
2013
).
17.
A.C.
Larson
and
R.B.
Von Dreele
,
Los Alamos National Laboratory Report LAUR
86–748
, (
2004
).
18.
B.H.
Toby
,
Journal of Applied Crystallography
34
,
210
(
2001
).
19.
S.C.
Vogel
and IUCr,
Journal of Applied Crystallography
44
,
873
(
2011
).
20.
Yashima
,
Hirose
,
Katano
,
Suzuki
,
Kakihana
, and
Yoshimura
,
Physical Review. B, Condensed Matter
51
,
8018
(
1995
).
21.
J.
Málek
,
L.
Beneš
, and
T.
Mitsuhashi
,
Powder Diffraction
12
,
96
(
1997
).
22.
A.
Navrotsky
and
S.
Ushakov
,
American Ceramic Society Bulletin
96
,
22
(
2017
).