A new undulator beamline (P22) for hard X-ray photoelectron spectroscopy (HAXPES) was built at PETRA III (DESY, Hamburg) to meet the increasing demand for HAXPES-based techniques. It provides four special instruments for high-resolution studies of the electronic and chemical structure of functional nano-materials and catalytic interfaces, with a focus on measurements under operando and/or ambient conditions: (i) a versatile solid-state spectroscopy setup with optional wide-angle lens and in-situ electrical characterization, (ii) a HAXPEEM instrument for sub-µm spectro-microscopy applications, (iii) an ambient pressure system (> 1 bar) for operando studies of catalytic reactions and (iv) a time-of-flight spectrometer as a full-field k-microscope for measurements of the 4D spectral function ρ(EB,k). The X-ray optics were designed to deliver high brightness photon flux within the HAXPES energy range 2.4 – 15 keV. An LN2-cooled double-crystal monochromator with interchangeable pairs of Si(111) and (311) crystals is optionally combined with a double channel-cut post-monochromator to generate X-rays with variable energy bandpass adapted to the needs of the experiment. Additionally, the beam polarization can be varied using a diamond phase plate integrated into the beamline. Adaptive beam focusing is realized by Be compound refractive lenses and/or horizontally deflecting mirrors down to a spot size of ∼20x17 µm2 with a flux of up to 1.1x1013 ph/s (for Si(111) at 6 keV).

1.
Hard X-Ray Photoelectron Spectroscopy (HAXPES)
, edited by
J. C.
Woicik
(
Springer International Publishing
,
Switzerland
,
2016
). ISBN 978-3-319-24043-5
2.
Recent Advances in Hard X-Ray Photoelectron Spectroscopy
, edited by
W.
Drube
,
J. El. Spec. Rel. Phenom.
190
part B (special issue),
125
314
(
2013
).
3.
W.
Drube
 et al,
Rev. Sci. Instrum.
63
,
1138
1141
(
1992
) and
W.
Drube
 et al,
Rev. Sci. Instrum.
66
,
1668
1670
(
1995
).
4.
J.
Strempfer
 et al,
J. Synchrotron Rad.
20
,
541
549
(
2013
)
5.
A.
Gloskovskii
 et al,
J. El. Spec. Rel. Phenom.
185
,
47
53
(
2012
).
6.
W.
Drube
 et al,
AIP Conf. Proc.
1741
,
020035
(
2016
).
7.
C.
Schlueter
 et al,
Synchrotron Radiat. News
31
,
29
35
(
2018
).
8.
A.
Schöps
 et al,
AIP Conf. Proc.
1741
,
020019
(
2016
).
9.
H.
Schulte-Schrepping
 et al,
AIP Conf. Proc.
1741
,
020041
(
2016
).
10.
FMB Oxford Ltd
.,
Oxford, United Kingdom
.
11.
L.
Petit
 et al,
private comm., ESRF
.
12.
S.
Francoual
 et al,
J. Phys.: Conf. Ser.
425
,
132010
(
2013
).
13.
H. J.
Elmers
 et al,
Phys. Rev. B
88
,
174407
(
2013
).
14.
A.
Sekiyama
 et al,
New J. Phys.
12
,
043045
(
2010
).
15.
K.
Ederer
 et al, these proceedings.
16.
A.
Zenkevich
 et al,
J. El. Spec. Rel. Phenom.
190
(
B
),
302
308
(
2013
).
17.
Yu.
Matveyev
 et al,
ACS Appl. Mater. Inter.
9
,
43370
43376
(
2017
).
18.
SPECS GmbH, 13355
Berlin, Germany
.
19.
Surface Concept GmbH, 55124
Mainz, Germany
.
20.
Scienta Omicron GmbH, 65232 Taunusstein, Germany.
21.
XR-50, SPECS GmbH, 13355 Berlin, Germany.
22.
EMG-4212,
Kimball Physics Inc
.,
Wilton, NH 03086-5715, USA
.
23.
M.
Patt
 et al,
Rev. Sci. Inst.
85
,
1137041
11
(
2014
).
24.
M.
Escher
,
N.
Weber
, et al,
J. Cond. Mat.
17
,
S1329
S1338
(
2005
).
25.
NanoESCA, Focus GmbH.
26.
K.
Medjanik
 et al,
Nature Materials
16
,
615
621
(
2017
).
27.
B.
Schönhense
 et al,
New J. Phys.
20
,
033004
(
2018
).
28.
P.
Amann
,
A.
Nilsson
 et al, to be published.
29.
R4000-Hipp2
,
Scienta Omicron
,
Uppsala
,
Sweden
.
30.
R. S.
Weatherup
 et al,
J. Phys. Chem. Lett.
7
,
1622
1627
(
2016
)
This content is only available via PDF.