The proposed magnetic structure allows to control all the parameters of the sinusoidal magnetic field B(s)=B0·sin(2πs/λU+ϕ) of permanent magnet undulator: amplitude B0, period length λU, and phase ϕ. The magnetic structure consists of diametrically magnetized cylindrical magnets at fixed positions. The field is adjusted by motorized rotation of each magnet. Tuning of radiated wavelength by changing the period length instead of field amplitude is more effective and results in a wider wavelength range and higher photon flux, especially for free electron lasers. Individual adjustment of the magnets allows for creating arbitrary shaped magnetic field and also for embedding other elements like phase shifters, dipoles, or multipole lenses into the undulator magnetic structure.

1.
R.
Carr
, “
Adjustable phase undulator
”,
Synchrotron Radiation News
5
(
4
),
10
(
1992
),
2.
A.
Temnykh
, “
Delta undulator for Cornell energy recovery linac
”,
Phys. Rev. ST Acc. Beams
11
,
120702
(
2008
),
3.
T.
Schmidt
,
M.
Calvi
, “
APPLE X Undulator for the SwissFEL Soft X-ray Beamline Athos
”,
Synchrotron Radiation News
,
31
:
3
,
35
40
(
2018
),
4.
S.
Sasaki
, “
Analyses for a planar variably-polarizing undulator
”,
NIM A
347
,
83
86
(
1994
),
5.
T.
Schmidt
,
A.
Imhof
,
G.
Ingold
,
B.
Jakob
,
C.
Vollenweider
, “
A Fixed Gap APPLE II Undulator for SLS
”,
AIP Conference Proceedings
879
,
400
(
2007
).
6.
G.
Shenoy
,
J.
Lewellen
,
D.
Shu
,
N.
Vinokurov
, “
Variable-period undulators as synchrotron radiation sources
”,
J. Synchrotron Rad.
10
,
205
213
(
2005
),
7.
N.
Vinokurov
,
O.
Shevchenko
,
V.
Tcheskidov
, “
Variable-period permanent magnet undulators
”,
Phys. Rev. Spec. Top. Acc. Beams
14
,
40701
(
2011
),
8.
J.
Mun
,
Y.
Jeong
,
N.
Vinokurov
, et al, “
Variable-period permanent-magnet helical undulator
”,
Phys. Rev. ST Accel. Beams
17
,
080701
(
2014
),
9.
M.
Hamberg
, “
The highly adjustable magnet undulator
”,
Proceedings of FEL2015
, TUP057 (
2015
)
10.
M.
Xie
, “
Exact and variational solutions of 3D eigenmodes in high gain FELs
”,
NIM A
445
,
59
66
(
2000
),
11.
B.
Faatz
 et al, “
The FLASH Facility: Advanced Options for FLASH2 and Future Perspectives
”,
Appl. Sci.
7
,
1114
(
2017
),
12.
M.
Tischer
,
A.
Schöps
,
P.
Vagin
, “
An adaptive scheme for suppression of higher harmonics in an undulator
”,
Proceedings of SRI2018
(
2018
).
13.
E.
Schneidmiller
,
M.
Yurkov
, “
A possible upgrade of FLASH for harmonic lasing down to 1.3 nm
”,
NIM A
717
,
20
(
2013
),
14.
R.
Lindberg
,
K.-J.
Kim
,
Y.
Cai
,
Y.
Ding
,
Z.
Huang
, “
Transverse Gradient Undulators For A Storage Ring X-Ray FEL Oscillator
”,
Proceedings of FEL2013
, THOBNO02 (
2013
)
15.
T.
Liu
,
W.
Qin
,
Y.
Ding
,
D.
Wang
,
Z.
Huang
, “
Beam Dynamics Studies Of The Transverse Gradient Undulator And Its Application To Suppression Of Microbunching Instability
”,
Proceedings of IPAC2017
, THPAB078, (
2017
),
16.
E.
Prat
,
S.
Bettoni
,
S.
Reiche
, “
Enhanced X-ray free-electron-laser performance from tilted electron beams
”,
NIM A
865
,
1
8
(
2017
),
17.
J.
Bahrdt
,
W.
Frentrup
,
A.
Gaupp
,
M.
Scheer
,
W.
Gudat
,
G.
Ingold
,
S.
Sasaki
, “
Elliptically polarizing insertion devices at BESSY II
”,
NIM A
467
468
, 21–29 (
2001
),
18.
O.
Chubar
,
P.
Elleaume
,
J.
Chavanne
, “
A 3D magnetostatics computer code for insertion devices
”,
J. Synchrotron Rad.
5
,
481
484
(
1998
),