FLASH is the only high-repetition-rate FEL in the XUV/soft X-ray regime worldwide. Based on superconducting accelerator technology developed at DESY, it can provide up to 8000 pulses/s for experiments in such diverse fields as atomic, molecular, and optical physics, chemistry, condensed matter and nanoscience, life science, warm dense matter research, and FEL physics and technology, including development of new methods and instrumentation. The outstanding opportunities for time-resolved studies at FLASH, which are based on unique pump-probe instrumentation including fully synchronized optical lasers, a large suite of X-ray split-and-delay units, a THz source that is phase stable with respect to the FEL pulses, and sophisticated diagnostics for pulse arrival and duration, attract a large number of eminent researchers in ultrafast science to FLASH. The recent addition of a second FEL line, FLASH2, with variable-gap undulators that enable easy wavelength tuning and novel lasing schemes for users in parallel to the operation of FLASH1, along with the progress in creating and measuring ultrashort single-spike SASE pulses, and the new suite of dedicated state-of-the-art end stations have made FLASH even more attractive to users. To keep FLASH at the forefront of FEL science and technology, an ambitious upgrade program is currently planned. FLASH2020+ foresees operation of two FEL lines, with one line providing externally seeded pulses up to the full repetition rate of FLASH and the second line allowing for flexible novel lasing schemes based on a set of variable undulators. This line will be designed to deliver coherent radiation from THz to soft X-rays. The new ideas are fully in sync with the requirements of the community for breakthrough science with a high-repetition rate XUV/soft X-ray FEL.

1.
W.
Ackermann
 et al,
Nat. Photon.
1
, p.
336
(
2007
).
2.
V.
Ayvazyan
 et al,
Eur. Phys. J. D
37
, p.
297
(
2006
).
3.
K.
Tiedtke
 et al,
New J. Phys.
11
, p.
023029
(
2009
).
4.
A.
Nelson
 et al,
Opt. Exp.
17
, p.
18271
(
2009
).
5.
E.
Plönjes
 et al,
AIP Conf. Proc.
1741
, p.
020008
(
2016
).
6.
K.
Honkavaara
 et al, “
FLASH: First soft X-ray FEL operating two undulator beamlines simultanoeusly
,” in
Proceedings of the 36th International Free Electron Laser Conference (FEL2014)
,
JACoW
, edited by
J.
Chrin
,
S.
Reiche
, and V.
RW
Schaa
(
2015
), pp.
635
639
.
7.
J.
Rönsch-Schulenburg
 et al,
J. Phys.: Conf. Ser.
874
, p.
012023
(
2017
).
8.
B.
Faatz
 et al,
New J. Phys.
18
, p.
062002
(
2016
).
9.
T.
Plath
 et al,
J. Synchrotron Rad.
23
, p.
1070
(
2016
).
10.
M.
Vogt
 et al, “
Status of the Superconducting Soft X-ray Free-Electron Laser FLASH at DESY
,” in
Proceedings of the 9th International Particle Accelerator Conference (IPAC18)
(
2018
) p.
TUPMF090
.
11.
M.
Gensch
 et al,
Infrared Phys. & Techn.
51
, p.
423
(
2008
).
12.
N.
Stojanovic
and
M.
Drescher
,
J. Phys. B: At. Mol. Opt. Phys.
46
, p.
192001
(
2013
).
13.
K.
Tiedtke
 et al,
J. Appl. Phys.
103
, p.
094511
(
2008
).
14.
K.
Tiedtke
 et al, “
Challenges for Detection of Highly Intense FEL Radiation: Photon Beam Diagnostics at FLASH1 and FLASH2
,” in
Proceedings of the 35th International Free Electron Laser Conference (FEL2013)
,
JACoW
, edited by
C.
Scholl
and V.
RW
Schaa
(
2013
), pp.
417
420
.
15.
E.
Plönjes
and
K.
Tiedtke
, “The Soft X-ray Free-Electron Laser FLASH at DESY,” in
Optical Technologies for Extreme-Ultraviolet and Soft X-ray Coherent Sources
, edited by
F.
Canova
and
L.
Poletto
(Springer Series in Optical Sciences, Vol.
197
,
Springer
,
Heidelberg
,
2015
).
16.
G.
Brenner
 et al,
Nucl. Instr. Meth. Phys. Res. A
635
, p.
S99
(
2011
).
17.
M.
Braune
 et al,
J. Synchrotron Rad.
23
, p.
10
(
2016
).
18.
M.
Braune
 et al,
J. Synchrotron Rad.
25
, p.
3
(
2018
).
19.
F.
Frassetto
 et al,
J. Phys.: Conf. Ser.
425
, p.
122010
(
2013
).
20.
C. von Korff
Schmising
 et al,
Rev. Sci. Instr.
88
, p.
053903
(
2017
).
21.
L.
Strüder
 et al,
Nucl. Instr. Meth. Phys. Res. A
614
, p.
483
(
2010
).
22.
B.
Erk
 et al,
J. Synchrotron Rad.
xxx
, p.
xxx
(
2018
).
23.
M.
Sauppe
 et al,
J. Synchrotron Rad.
25
, p.
xxx
(
2018
).
24.
M.
Wöstmann
 et al,
J. Phys. B: At. Mol. Opt. Phys.
46
, p.
164005
(
2013
).
25.
M.
Wellhöfer
 et al,
J. Opt. A: Pure Appl. Opt.
9
, p.
749
(
2007
).
26.
N.
Gerasimova
 et al,
J. Mod. Opt.
58
, p.
1480
(
2011
).
27.
F.
Sorgenfrei
 et al,
Rev. Sci. Instr.
81
, p.
043107
(
2010
).
28.
S.
Dziarzhytski
 et al,
J. Synchrotron Rad.
23
, p.
123
(
2016
).
29.
S.
Rohling
 et al,
Proc. SPIE
10237
, p.
1023712
(
2017
).
30.
B.
Keitel
 et al,
J. Synchrotron Rad.
23
, p.
43
(
2016
).
31.
J.
Ullrich
 et al,
Rep. Prog. Phys.
66
, p.
1463
(
2003
).
32.
H.
Redlin
 et al,
Nucl. Instr. Meth. Phys. Res. A
635
, p.
S88
(
2011
).
33.
S.
Schulz
 et al,
Nat. Commun.
6
, p.
5938
(
2015
).
34.
B.
Faatz
 et al,
Appl. Sci.
7
, p.
1114
(
2017
).
35.
G.
Brenner
 et al,
Proc. SPIE
10237
, p.
1023716
(
2017
).
36.
L.
Poletto
 et al,
J. Synchrotron Rad.
25
, p.
131
(
2018
).
37.
R.
Ivanov
 et al,
J. Synchrotron Rad.
25
, p.
26
(
2018
).