The X-ray pair distribution function beamline I15-1 at Diamond Light Source requires optical elements that focus a wiggler X-ray beam of high energy (40-80 keV) and large area (11.0 mm × 4.4 mm) into a small spot (FWHM∼700 µm (h) × 20 µm (v)) at a variable distance between sample and detector. X-ray lenses do not reach the necessary effective apertures because of absorption and the limits of fabrication technology. The aperture of conventional silicon X-ray mirrors, even with metal coatings, is likewise limited by the shallow critical angle for high-energy X-rays. As a solution, CINEL Strumenti Scientifici delivered the first multilayer-coated bimorph mirror for use at a synchrotron beamline. A silicon substrate was polished by Thales-SESO to have an elliptically curved surface. The mirror was then coated with three multilayer stripes (Ni/B4C, W/B4C, Pt/B4C) of unmatched 1 m length by Rigaku Innovative Technologies. Each stripe’s d-spacing was chosen so that the Bragg angle of its first-order reflection would occur at 4.2 mrad at the center of the mirror. Moreover, each stripe’s d-spacing was graded along the mirror’s length to ensure high reflectivity from the whole stripe. Piezoelectric actuators were then glued to the sides of the coated substrate by Thales-SESO to convert it to a bimorph deformable mirror. This enables the mirror to vary its focusing distance from 3.6 m to 4.8 m, and to compensate for residual long-wavelength slope errors. The mirror’s capability to provide vertical focusing exceeding specifications was demonstrated by ex-situ metrology and in-situ X-ray measurements. Representative results are presented.

1.
R.
Signorato
,
O.
Hignette
, and
J.
Goulon
,
J. Synchrotron Radiat.
5
,
797
800
(
1998
).
2.
A.
Rack
,
T.
Weitkamp
,
M.
Riotte
,
D.
Grigoriev
,
T.
Rack
,
L.
Helfen
,
T.
Baumbach
,
R.
Dietsch
,
T.
Holz
,
M.
Krämer
,
F.
Siewert
,
M.
Meduňa
,
P.
Cloetens
, and
E.
Ziegler
,
J. Synchrotron Radiat.
17
,
496
510
(
2010
).
3.
J. P.
Sutter
,
T.
Connolley
,
T. P.
Hill
,
H.
Huang
,
D. W.
Sharp
, and
M.
Drakopoulos
,
J. Synchrotron Radiat.
15
,
584
592
(
2008
).
4.
M.
Drakopoulos
,
T.
Connolley
,
C.
Reinhard
,
R.
Atwood
,
O.
Magdysyuk
,
N.
Vo
,
M.
Hart
,
L.
Connor
,
B.
Humpreys
,
G.
Howell
,
S.
Davies
,
T.
Hill
,
G.
Wilkin
,
U.
Pedersen
,
A.
Foster
,
N.
De Maio
,
M.
Basham
,
F.
Yuan
, and
K.
Wanelik
,
J. Synchrotron Radiat.
22
,
828
838
(
2015
).
5.
J. P.
Sutter
,
P. A.
Chater
,
M. R.
Hillman
,
D. S.
Keeble
,
M. G.
Tucker
, and
H.
Wilhelm
, “
Three-energy focusing Laue monochromator for the Diamond Light Source X-ray pair distribution function beamline I15-1
,” in
Proceedings of the 12ᵗʰ International Conference on Synchrotron Radiation Instrumentation – SRI2015
,
AIP Conference Proceedings
1741
, edited by
Q.
Shen
and
C.
Nelson
. (
American Institute of Physics
,
Melville, NY
,
2016
),
040005
.
6.
D. L.
Windt
,
Computers in Physics
12
,
360
370
(
1998
).
7.
S. G.
Alcock
,
I.
Nistea
,
J. P.
Sutter
,
K.
Sawhney
,
J.-J
Fermé
,
C.
Thellièr
, and
L.
Peverini
,
J. Synchrotron Radiat.
22
,
10
15
(
2015
).
8.
S. G.
Alcock
,
I.
Nistea
,
R.
Signorato
, and
K.
Sawhney
,
J. Synchrotron Radiat.
, submitted.
9.
S.
Alcock
,
I.
Nistea
,
R.
Signorato
,
R. L.
Owen
,
D.
Axford
,
J. P.
Sutter
,
A.
Foster
, and
K.
Sawhney
,
J. Synchrotron Radiat.
, submitted.
10.
S. G.
Alcock
,
K. J. S.
Sawhney
,
S.
Scott
,
U.
Pedersen
,
R.
Walton
,
F.
Siewert
,
T.
Zeschke
,
F.
Senf
,
T.
Noll
, and
H.
Lammert
,
Nucl. Instrum. Methods Phys. Res. A
616
,
224
228
(
2010
).
11.
O.
Hignette
,
A.
Freund
, and
E.
Chinchio
,
Proc. SPIE
3152
,
188
199
(
1997
).
12.
M. Sanchez
del Rio
,
N.
Canestrari
,
F.
Jiang
, and
F.
Cerrina
,
J. Synchrotron Radiat.
18
,
708
716
(
2011
).